2024-2025学年辽宁省丹东市第十四中学数学九上开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)方差是表示一组数据的
A.变化范围B.平均水平C.数据个数D.波动大小
2、(4分)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )
A.四边形ABCD由矩形变为平行四边形 B.BD的长度增大
C.四边形ABCD的面积不变D.四边形ABCD的周长不变
3、(4分)电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为( )
A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排
4、(4分)如图所示,将矩形ABCD纸对折,设折痕为MN,再把B点叠在折痕线MN上,(如图点B’),若,则折痕AE的长为( )
A.B.C.2D.
5、(4分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息,下列说法正确的是( )
A.甲队开挖到30 m时,用了2 h
B.开挖6 h时,甲队比乙队多挖了60 m
C.乙队在0≤x≤6的时段,y与x之间的关系式为y=5x+20
D.当x为4 h时,甲、乙两队所挖河渠的长度相等
6、(4分)计算÷的结果是( )
A.B.C.D.
7、(4分)已知一个直角三角形的两边长分别为3和4,则第三边长是( )
A.5B.25C.D.5或
8、(4分)已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为( )
A.y=B.y=-C.y=D.y=-
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.
10、(4分)若关于的两个方程与有一个解相同,则__________.
11、(4分)函数y=中,自变量x的取值范围是___________.
12、(4分)一个小区大门的栏杆如图所示,垂直地面于,平行于地面,那么_________.
13、(4分)分解因式:4-m2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在梯形中中,,是的中点,,,,,点是边上一动点,设的长为.
(1)当的值为多少时,以点为顶点的三角形为直角三角形;
(2)当的值为多少时,以点为顶点的四边形为平行四边形;
(3)点在边上运动的过程中,以为顶点的四边形能否构成菱形?试说明理由.
15、(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;
(3)直接写出点B2,C2的坐标.
16、(8分)如图,在四边形中,,点为的中点,,交于点,,求的长.
17、(10分)如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?
18、(10分)问题情境:在中,,点是的中点,以为角的顶点作.
感知易证:(1)如图1,当射线经过点时,交边于点.将从图1中的位置开始,绕点按逆时针方向旋转,使射线、始终分别交边,于点、,如图2所示,易证,则有.
操作探究:(2)如图2,与是否相似,若相似,请证明;若不相似,请说明理由;
拓展应用:(3)若,直接写出当(2)中的旋转角为多少度时,与相似.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为_____.
20、(4分)2018年6月1日,美国职业篮球联赛(NBA)总决赛第一场在金州勇士队甲骨文球馆进行.据统计,当天通过腾讯视频观看球赛的人数突破5250万.用科学记数法表示“5250”为_____.
21、(4分)分解因式:﹣2x2y+16xy﹣32y= .
22、(4分)若式子有意义,则x的取值范围是________.
23、(4分)若方程的两根,则的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(2﹣1)2+(+4)(-4).
25、(10分)某学校开展课外体育活动,决定开设A:篮球、B:羽毛球、C:跑步、D:乒乓球这四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.
(1)样本中最喜欢A项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;
(2)请把条形统计图补充完整;
(3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?
26、(12分)(1)先化简,再求值:,其中;
(2)三个数4,,在数轴上从左到右依次排列,求a的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据方差的意义进行求解即可得.
【详解】
方差是用来表示一组数据波动大小的量,
故选D.
本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,通常用s2表示,其公式为S2=[(x1-)2+(x2-)2+…+(xn-)2](其中n是样本容量,表示平均数).方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、C
【解析】
试题分析:由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形 ,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.
考点:1.四边形面积计算;2.四边形的不稳定性.
3、A
【解析】
∵(12,6)表示12排6号,(12,12) 表示12排12号,
∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.
故选A.
考查学生利用类比点的坐标解决实际问题的能力和阅读理解能力.
4、C
【解析】
先作辅助线,然后根据折叠的性质和解直角三角形计算.
【详解】
延长EB′与AD交于点F,
∵∠AB′E=∠B=90°,MN是对折折痕,
∴EB′=FB′,∠AB′E=∠AB′F,
在△AEB′和△AFB′中,,
∴△AEB′≌△AFB′,
∴AE=AF,
∴∠B′AE=∠B′AD(等腰三角形三线合一),
故根据题意,易得∠BAE=∠B′AE=∠B′AD;
故∠EAB=30°,
∴EB=EA,
设EB=x,AE=2x,
∴(2x)2=x2+AB2,x=1,
∴AE=2,
则折痕AE=2,
故选C.
本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
5、D
【解析】
选项A,观察图象即可解答;选项B,观察图象可知开挖6h时甲队比乙队多挖:60-50=10(m),由此即可判定选项B;选项C,根据图象,可知乙队挖河渠的长度y(m)与挖掘时间x(h)之间的函数关系是分段函数,由此即可判定选项C;选项D,分别求得施工4小时时甲、乙两队所挖河渠的长度,比较即可解答.
【详解】
选项A,根据图示知,乙队开挖到30m时,用了2h,甲队开挖到30m时,用的时间是大于2h.故本选项错误;
选项B,由图示知,开挖6h时甲队比乙队多挖:60-50=10(m),即开挖6 h时甲队比乙队多挖了10m.故本选项错误;
选项C,根据图示知,乙队挖河渠的长度y(m)与挖掘时间x(h)之间的函数关系是分段函数:在0~2h时,y与x之间的关系式y=15x;在2~6h时,y与x之间的关系式y=5x+1.故本选项错误;
选项D,甲队4h完成的工作量是:(60÷6)×4=40(m),
乙队4h完成的工作量是:5×4+1=40(m),
∵40=40,
∴当x=4时,甲、乙两队所挖管道长度相同.故本选项正确;
故选D.
本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,读懂图象信息是解题的关键.
6、C
【解析】
根据根式的计算法则计算即可.
【详解】
解:÷=
故选C.
本题主要考查分式的计算化简,这是重点知识,应当熟练掌握.
7、D
【解析】
分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.
【详解】
解:
分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是;
②3和4都是直角边,由勾股定理得:第三边长是=5;
即第三边长是5或,
故选D.
本题考查了对勾股定理的应用,注意:在直角三角形中的两条直角边a、b的平方和等于斜边c的平方.
8、B
【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0),即可求得k的值.
【详解】
设反比例函数的解析式为y=(k≠0).
∵该函数的图象过点M(−1,2),
∴2=,
得k=−2.
∴反比例函数解析式为y=-.故选B.
本题考查了待定系数法求反比例函数解析式,解题的关键是掌握待定系数法求反比例函数解析式的方法和步骤.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,1种情况进行讨论.
【详解】
解:如图所示:
故答案是:1.
本题考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.
10、1
【解析】
首先解出一元二次方程的解,根据两个方程的解相同,把x的值代入第二个方程中,解出a即可.
【详解】
解:解方程得x1=2,x2=−1,
∵x+1≠0,
∴x≠−1,
把x=2代入中得:,
解得:a=1,
故答案为1.
此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,分式方程注意分母要有意义.
11、且x≠−1.
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式求解.
【详解】
根据题意,可得
且x+1≠0;
解得且x≠−1.
故答案为且x≠−1.
考查函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.
12、
【解析】
作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.
【详解】
解:作CH⊥AE于H,如图,
∵AB⊥AE,CH⊥AE,
∴AB∥CH,
∴∠ABC+∠BCH=180°,
∵CD∥AE,
∴∠DCH+∠CHE=180°,
而∠CHE=90°,
∴∠DCH=90°,
∴∠ABC+∠BCD=180°+90°=270°.
故答案为270°.
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
13、(2+m)(2−m)
【解析】
原式利用平方差公式分解即可.
【详解】
解:原式=(2+m)(2−m),
故答案为:(2+m)(2−m).
此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)当的值为3或8时,以点为顶点的三角形为直角三角形;(2)当的值为1或11时,以点为顶点的四边形为平行四边形;(3)以点为顶点的四边形能构成菱形,理由详见解析.
【解析】
(1)过AD作于,于,当时,分情况讨论,求出即可;
(2)分为两种情况,画出图形,根据平行四边形的性质推出即可;
(3)化成图形,根据菱形的性质和判定求出BP即可.
【详解】
解(1)如图,分别过AD作于,于
∴
而
∴
∴
若以为顶点的三角形为直角三角形,
则或,(在图中不存在)
当时
∴与重合
∴
当时
∴与重合
∴
故当的值为3或8时,以点为顶点的三角形为直角三角形;
(2)若以点为顶点的四边形为平行四边形,那么,有两种情况:
①当在的左边,
∵是的中点,
∴
∴
②当在的右边,
故当的值为1或11时,以点为顶点的四边形为平行四边形;
(3)由(2)知,当时,以点为顶点的四边形能构成菱形
当时,以点为顶点的四边形是平行四边形,
∴,过作于,
∵,,则,
∴.
∴,
∴
故此时是菱形
即以点为顶点的四边形能构成菱形.
此题考查直角三角形的性质,平行四边形的判定,解题关键在于作辅助线和利用勾股定理进行计算.
15、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).
【解析】
试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.
试题解析:解:(1)如图,△A1B1C1即为所求;
(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).
16、
【解析】
连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=2,AE=BE=DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出结果.
【详解】
解:连接,作于,如图所示:
则,点为的中点,,
,
,,
,,
,是直角三角形,
,,
,,,
,
在中,由勾股定理得:;
【点睛】本题考查勾股定理,解题关键在于求得EF=BE+BF.
17、这条小路的面积是140m1 .
【解析】
试题分析:根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.
试题解析:路等宽,得BE=DF,
△ABE≌△CDF,
由勾股定理,得BE==80(m)
S△ABE=60×80÷1=1400(m1)
路的面积=矩形的面积﹣两个三角形的面积
=84×60﹣1400×1
=140(m1).
答:这条小路的面积是140m1.
【点睛】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.
18、(1)CD;(2)△BDF∽△DEF,理由见详解;(3)10°或40°.
【解析】
(1)如图2,根据∠EDF=∠B及三角形外角性质可得∠BFD=∠CDE,再根据∠B=∠C即可得到△BFD∽△CDE解决问题.
(2)如图2,由(2)得△BFD∽△CDE,则有,由D是BC的中点可得.再根据∠B=∠EDF即可得到△BDF∽△DEF.
(3)由∠B=∠C=50°可得∠BAC=80°,AB=AC,再由BD=CD可得AD⊥BC.若△DEF与△ABC相似,由△BDF∽△DEF可得△BDF与△ABC相似,从而得到∠BDF=∠BAC=80°,或∠BDF=∠C=50°,即可解决问题.
【详解】
解:(1)如图2,
∵AB=AC
∴∠B=∠C,
∵∠FDC是△BFD的一个外角,
∴∠FDC=∠B+∠BFD.
∵∠FDC=∠FDE+∠EDC,∠EDF=∠B,
∴∠BFD=∠CDE.
∵∠B=∠C,
∴△BFD∽△CDE;
∴.
(2)如图2,结论:△BDF∽△DEF.
理由:由(1)得.
∵D是BC的中点,
∴BD=CD,
∴,
又∵∠B=∠EDF,
∴△BDF∽△DEF.
(3)连接AD,如图3,
∵∠B=∠C=50°,
∴∠BAC=80°,AB=AC.
∵BD=CD,
∴AD⊥BC.
若△DEF与△ABC相似,
∵△BDF∽△DEF,
∴△BDF与△ABC相似,
∴∠BDF=∠BAC=80°,或∠BDF=∠C=50°,
∴∠ADF=90°﹣80°=10°,或∠ADF=90°﹣50°=40°,
∴当(2)中的旋转角为10°或40°时,△DEF与△ABC相似.
本题属于相似形综合题,主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质、三角形内角和定理等知识,解题的关键是正确寻找相似三角形的判定条件,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
在一次函数y=x+4中,分别令x=0, y=0,解相应方程,可求得A、B两点的坐标,由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP⊥AB时,满足条件,根据直角三角形面积的不同表示方法可求得OP的长,即可求得EF的最小值.
【详解】
解:∵一次函数y=x+4中,令x=0,则y=4,令y=0,则x=-3,
∴A(0,4),B(-3,0),
∵PE⊥y轴于点E,PF⊥x轴于点F,
∴四边形PEOF是矩形,且EF=OP,
∵O为定点,P在线段上AB运动,
∴当OP⊥AB时,OP取得最小值,此时EF最小,
∵A(0,4),点B坐标为(-3,0),
∴OA=4,O B=3,
由勾股定理得:AB==5,
∵AB·OP=AO·BO=2S△OAB,
∴OP=,
故答案为:.
本题考查了一次函数图象上点的坐标特点,勾股定理、矩形的判定与性质、最值问题等,熟练掌握相关知识、确定出OP的最小值是解题的关键.
20、5.25×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:5250=5.25×1,
故答案为5.25×1.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
21、﹣2y(x﹣4)2
【解析】
试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2
故答案为﹣2y(x﹣4)2
考点:因式分解
22、
【解析】
分析:根据被开方数为非负数列不等式求解即可.
详解:由题意得,
x-2≥0,
∴x≥2.
故答案为x≥2.
点睛:本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
23、1
【解析】
根据根与系数的关系求出,代入即可求解.
【详解】
∵是方程的两根
∴=-=4,==1
∴===4+1=1,
故答案为:1.
此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用.
二、解答题(本大题共3个小题,共30分)
24、-4
【解析】
利用完全平方公式和平方差公式计算.
【详解】
解:原式
.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
25、(1)40%,144;(2)详见解析;(3)250人
【解析】
(1)根据扇形统计图中的数据可以求得最喜欢A项目的人数所占的百分比,并求出其所在扇形统计图中对应的圆心角度数;
(2)根据统计图中的数据可以求得选择A的人数,从而可以将条形统计图补充完整;
(3)根据统计图中的数据可以求得全校最喜欢跑步的学生人数约是多少.
【详解】
解:(1)样本中最喜欢A项目的人数所占的百分比为:1﹣30%﹣10%﹣20%=40%,其所在扇形统计图中对应的圆心角度数是:360°×40%=144°,
故答案为40%,144;
(2)选择A的人有:45÷30%×40%=60(人),
补全的条形统计图如右图所示;
(3)2500×10%=250(人),
答:全校最喜欢跑步的学生人数约是250人.
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
26、 (1)-;(2)
【解析】
(1)直接将括号里面通分运算,进而结合分式的加减运算法则计算得出答案;
(2)根据题意得出不等式组,进而得出答案.
【详解】
解:(1)
当时,代入得:原式
(2)解:根据题意得,
解得:,
∴原不等式组的解集是﹐
∴a的取值范围是﹒
此题主要考查了分式的化简求值以及不等式组的解法,正确掌握分式的混合运算法则是解题关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省溧水高级中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年江苏省溧水高级中学数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南广益实验中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖南广益实验中学数学九上开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。