2024-2025学年辽宁省铁岭市名校九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( )
A.可能不是平行四边形B.一定是菱形
C.一定是正方形D.一定是矩形
2、(4分)如图,延长矩形 ABCD 的边 BC 至点 E ,使 CE BD ,连接 AE ,若 ∠ADB 40 ,则 ∠E 的度数是( )
A.20B.25C.30D.35
3、(4分)下列边长相等的正多边形的组合中,不能镶嵌平面的是( )
A.正三角形和正方形B.正三角形和正六边形
C.正方形和正八边形D.正五边形和正方形
4、(4分)如图,RtABC中,∠ACB=90°,CD是高,∠A=30°,CD=cm则AB的长为( )
A.4cmB.6cmC.8cmD.10cm
5、(4分)关于x的方程x2+(m2﹣2)x﹣15=0有一个根是x=3,则m的值是( )
A.0B.2C.2或﹣2D.﹣2
6、(4分)我国在近几年奥运会上所获金牌数(单位:枚)统计如下:
则这组数据的众数与中位数分别是( )
A.32、32B.32、16C.16、16D.16、32
7、(4分)一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是( )
A.B.C.D.
8、(4分)如图,在菱形ABCD中MN分别在AB、CD上且AM=CN,MN与AC交于点O,连接BO若∠DAC=62°,则∠OBC的度数为( )
A.28°B.52°C.62°D.72°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个正数的平方根分别是x+1和x﹣3,则这个正数是____________
10、(4分)分解因式:______.
11、(4分)如图,是的角平分线,交于,交于.且交于,则________度.
12、(4分)如图,在平面直角坐标系中,直线y=4x+4与x、y轴分别相交于点A、B,四边形ABCD是正方形,抛物线过C,D两点,且C为顶点,则a的值为_______.
13、(4分)已知一个多边形的内角和为540°,则这个多边形是______边形.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,的顶点坐标分别为,.
(1)画出关于点的中心对称图形;
(2)画出绕原点逆时针旋转的,直接写出点的坐标
(3)若内一点绕原点逆时针旋转的上对应点为,请写出的坐标.(用含,的式子表示).
15、(8分)某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.
(1)这次共调查了多少名学生?扇形图中的、值分别是多少?
(2)补全频数分布直方图;
(3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:
根据调查结果估计该校有多少学生在光线较暗的环境下学习?
16、(8分)某公司10名销售员,去年完成的销售额情况如表:
(1)求销售额的平均数、众数、中位数;
(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
17、(10分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为(单位:吨/小时),卸完这批货物所需的时间为(单位:小时).
(1)求关于的函数表达式.
(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?
18、(10分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.
(1)求证:AE=2CE;
(2)连接CD,请判断△BCD的形状,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。
20、(4分)计算:(1)=______;(2)=______;(3) =______.
21、(4分)如图,点P是平面坐标系中一点,则点P到原点的距离是_____.
22、(4分)已知正n边形的每一个内角为150°,则n=_____.
23、(4分)已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是_____,最大值是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形?
25、(10分)在面积都相等的所有三角形中,当其中一个三角形的一边长为时,这条边上的高为.
(1)①求关于的函数表达式;
②当时,求的取值范围;
(2)小李说其中有一个三角形的一边与这边上的高之和为小赵说有一个三角形的一边与这边上的高之和为.你认为小李和小赵的说法对吗?为什么?
26、(12分)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)
(1)求这个一次函数的解析式;
(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;
(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.
【详解】
解:这个四边形是矩形,理由如下:
∵对角线AC、BD交于点O,OA= OC, OB=OD,
∴四边形ABCD是平行四边形,
又∵OA=OC=OD=OB,
∴AC=BD,
∴四边形ABCD是矩形.
故选D.
本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.
2、A
【解析】
连接,由矩形性质可得、,知,而,可得度数.
【详解】
连接,
四边形是矩形,
,,且,
,
又,
,
,
,
,即.
故选.
本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.
3、D
【解析】
首先分别求出各个正多边形每个内角的度数,再结合镶嵌的条件作出判断.
【详解】
解:A项,正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴能密铺;
B项,正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴能密铺;
C项,正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,∴能密铺;
D项,正五边形的每个内角是108°,正方形的每个内角是90°,∵90m+108n=360,,没有正整数解,∴此种情形不能密铺;
故选D.
本题考查了平面镶嵌的条件,解决此类问题,一般从正多边形的内角入手,围绕一个顶点处的所有内角之和是360°进行探究判断.
4、C
【解析】
根据直角三角形的性质求出AC,得到BC=AB,根据勾股定理列式计算即可.
【详解】
在Rt△ADC中,∠A=30°,
∴AC=1CD=4,
在Rt△ABC中,∠A=30°,
∴BC=AB,
由勾股定理得,AB1=BC1+AC1,即AB1=(AB)1+(4)1,
解得,AB=8(cm),
故选C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
5、C
【解析】
把x=3代入方程x1+(m1﹣1)x﹣15=0得9+3m1﹣6﹣15=0,然后解关于m的方程即可.
【详解】
把x=3代入方程x1+(m1﹣1)x﹣15=0得9+3m1﹣6﹣15=0,
解得m=±1.
故选C.
本题考查了一元二次方程解的定义及一元二次方程的解法,正确得到关于m的方程是解决问题的关键.
6、C
【解析】
数据1出现了两次最多为众数,1处在第5位和第6位,它们的平均数为1.
所以这组数据的中位数是1,众数是1,
故选C.
【点睛】确定一组数据的中位数和众数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
7、C
【解析】
因为慢车和快车从相距500千米的甲乙两地同时出发,则时间为0小时,两车相距距离为500千米,经过4小时,两车相遇,则此时两车相距距离为0,相遇之后快车经过小时先到达甲地,此时两车相距(75+50) ×=千米>250千米,然后再经过小时,慢车到达乙地,此时两车相距500千米,故选C.
8、A
【解析】
连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【详解】
解:连接OB,
∵四边形ABCD为菱形
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
∵,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=62°,
∴∠BCA=∠DAC=62°,
∴∠OBC=90°-62°=28°.
故选:A.
本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据正数的两个平方根互为相反数列出关于x的方程,解之可得.
【详解】
根据题意知x+1+x-3=0,
解得:x=1,
∴x+1=2
∴这个正数是22=1
故答案为:1.
本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.
10、
【解析】
根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.
【详解】
,
=,
=,
故答案为:.
本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
11、
【解析】
先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出.
【详解】
如图所示:
∵DE∥AC,DF∥AB,
∴四边形AEDF为平行四边形,
∴OA=OD,OE=OF,∠2=∠3,
∵AD是△ABC的角平分线,
∵∠1=∠2,
∴∠1=∠3,
∴AE=DE.
∴▱AEDF为菱形.
∴AD⊥EF,即∠AOF=1°.
故答案是:1.
考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.
12、-1
【解析】
如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,利用三角形全等,求出点C、点D和点F坐标即可解决问题.
【详解】
解:如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F.
∵直线y=-1x+1与x轴、y轴分别交于A、B两点,
∴点B(0,1),点A(1,0),△ABO≌△DAM
∵四边形ABCD是正方形,
∴AB=AD=DC=BC,∠BAD=90°,
∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,
∴∠ABO=∠DAM,
在△ABO和△DAM中,
,
∴△ABO≌△DAM,
∴AM=BO=1,DM=AO=1,
同理可以得到:CF=BN=AO=1,DF=CN=BO=1,
∴点F(5,5),C(1,5),D(5,1),
把C(1,1),D(5,1)代入得:
,解得:b=-9a-1,
∵C为顶点, ∴,即 ,解得:a=-1.
故答案为-1.
本题考查二次函数与一次函数的交点、正方形的性质、全等三角形的判定和性质等知识,解题的关键是添加辅助线构造全等三角形,属于中考常考题型.
13、5.
【解析】
设这个多边形是n边形,由题意得,
(n-2) ×180°=540°,解之得,n=5.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2),见解析;(3).
【解析】
(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到点C2的坐标;
(3)利用(2)中对应点的规律写出Q的坐标.
【详解】
解:(1)如图,为所作;
(2)如图,为所作,点的坐标为;
(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为.
故答案为:(1)见解析;(2),见解析;(3).
本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
15、(1)200名,a=18%,b=20%;(2)见解析;(3)270名
【解析】
(1)根据第四组的频数与其所占的百分比求出被调查的学生数.
(2)根据各组所占的百分比分别计算他们的频数,从而补全频数分布直方图.
(3)首先计算各组在光线较暗的环境下学习的学生数,再根据被抽取的学生数所占的比例进行估算该校有多少学生在光线较暗的环境下学习.
【详解】
(1)这次共调查的学生为:(名).
..
(2)0.35~0.65的频数为:;0.95~1.25的频数为:.
补全频数分布直方图如下:
(3)各组在光线较暗的环境下学习的学生总数为:
(名).
该校学生在光线较暗的环境下学习的有:(名).
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
16、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.
【解析】
(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
(2)根据平均数,中位数,众数的意义回答.
【详解】
解:
(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);
出现次数最多的是4万元,所以众数是4(万元);
因为第五,第六个数均是5万元,所以中位数是5(万元).
(2)今年每个销售人员统一的销售标准应是5万元.
理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.
本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.
17、 (1)v=;(2)平均每小时至少要卸货20吨.
【解析】
(1)直接利用vt=100进而得出答案;
(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.
【详解】
(1)由题意可得:100=vt,
则;
(2)∵不超过5小时卸完船上的这批货物,
∴t≤5,
则v≥=20,
答:平均每小时至少要卸货20吨.
考查了反比例函数的应用,正确得出函数关系式是解题关键.
18、见解析
【解析】
(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;
(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状
【详解】
(1)证明:连结BE,如图.
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE.
(2)解:△BCD是等边三角形.
理由如下:
∵DE垂直平分AB,
∴D为AB的中点.
∵∠ACB=90°,
∴CD=BD.
又∵∠ABC=60°,
∴△BCD是等边三角形.
此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.
【详解】
∵四边形OABC是矩形,
∴∠B=90°,
∵BD=BE=1,
∴∠BED=∠BDE=45°,
∵沿直线DE将△BDE翻折,点B落在点B′处,
∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,
∴∠BEB′=∠BDB′=90°,
∵点B的坐标为(3,2),
∴点B′的坐标为(2,1).
故答案为:(2,1).
此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形
20、
【解析】
根据二次根式的乘法公式:和除法公式计算即可.
【详解】
解:(1);
(2);
(3).
故答案为:;;.
此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.
21、1
【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.
【详解】
连接PO,∵点P的坐标是(),
∴点P到原点的距离=
=1.
故答案为:1
此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.
22、1
【解析】
试题解析:由题意可得:
解得
故多边形是1边形.
故答案为1.
23、1 2
【解析】
根据顶点式表示的二次函数,结合考虑-2≤x≤1,即可求解此题.
【详解】
解:将标准式化为两点式为y=2(x+1)2+1,﹣2≤x≤1
∵开口向上,
∴当x=1时,有最大值:ymax=2,
当x=﹣1时,ymin=1.
故答案为1,2.
考查了二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.
二、解答题(本大题共3个小题,共30分)
24、(1)5;(2)当t=2或t=时,△PAE为直角三角形;
【解析】
(1)在直角△ADE中,利用勾股定理进行解答;
(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
【详解】
解:(1)∵矩形ABCD中,AB=9,AD=1,
∴CD=AB=9,∠D=90°,
∴DE=9﹣2=3,
∴AE==5;
(2)①若∠EPA=90°,t=2;
②若∠PEA=90°,(2﹣t)2+12+52=(9﹣t)2,
解得t=.
综上所述,当t=2或t=时,△PAE为直角三角形;
本题考查了四边形综合题,综合勾股定理,直角三角形的性质,一元二次方程的应用等知识点,要注意分类讨论,以防漏解.
25、(1)①;②;(2)小赵的说法正确,见解析
【解析】
(1)①直接利用三角形面积求法进而得出y与x之间的关系;
②直接利用x≥3得出y的取值范围;
(2)直接利用x+y的值结合根的判别式得出答案.
【详解】
解:
为底,为高,
,
;
②当x=3时,y=2,
∴当x≥3时,y的取值范围为:0<y≤2;
小赵的说法正确.
理由如下:小李:
整理得,x2-4x+6=0,
∵△=42-4×6<0,
∴一个三角形的一边与这边上的高之和不可能是4;
小赵:
得
;
小赵的说法正确.
此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.
26、(1)y=x+5;(2)5;(1)7或1
【解析】
(1)利用待定系数法求一次函数的解析式;
(2)设直线AB交x轴于C,如图,则C(﹣5,0),然后根据三角形面积公式计算S△OPC即可;
(1)利用三角形面积公式得到×5×|m|=2××1×5,解得m=2或m=﹣2,然后利用一次函数解析式计算出对应的纵坐标即可.
【详解】
解:(1)设这个一次函数的解析式是y=kx+b,
把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,
所以这个一次函数的解析式是:y=x+5;
(2)设直线AB交x轴于C,如图,
当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),
当n=2时,S△OPC=×5×2=5,
即直线AB,直线OP与x轴围成的图形的面积为5;
(1)∵当△OAP的面积等于△OAB的面积的2倍,
∴×5×|m|=2××1×5,
∴m=2或m=﹣2,
即P点的横坐标为2或﹣2,
当x=2时,y=x+5=7,此时P(2,7);
当x=﹣2时,y=x+5=1,此时P(﹣2,1);
综上所述,n的值为7或1.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
题号
一
二
三
四
五
总分
得分
批阅人
届 数
23届
24届
25届
26届
27届
28届
金牌数
15
5
16
16
28
32
视力
0.35~0.65
0.65~0.95
0.95~1.25
1.25~l.55
比例
销售额(单位:万元)
3
4
5
6
7
8
10
销售员人数(单位:人)
1
3
2
1
1
1
1
2024-2025学年辽宁省营口市名校九上数学开学监测模拟试题【含答案】: 这是一份2024-2025学年辽宁省营口市名校九上数学开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年辽宁省沈阳市第一二七中学九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市第一二七中学九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。