2024-2025学年内蒙古海拉尔区九上数学开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将一个n边形变成(n+2)边形,内角和将( )
A.减少180B.增加180°C.减少360°D.增加360°
2、(4分)下列命题中正确的是( )
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分且相等的四边形是正方形
3、(4分)如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为( )
A.1B.2C.3D.4
4、(4分)如图,直线与交于点,则不等式的解集为( )
A.B.C.D.
5、(4分)已知一次函数,y随着x的增大而减小,且,则它的大致图象是( )
A.B.C.D.
6、(4分)如图所示的数字图形中是中心对称图形的有( )
A.1个B.2个C.3个D.4个
7、(4分)与是同类二次根式的是( )
A.B.C.D.
8、(4分)如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为( )
A.14B.16C.18D.20
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,为直角三角形,其中,则的长为__________________________.
10、(4分)若不等式组无解,则a的取值范围是___.
11、(4分)如图,点D是直线外一点,在上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是:_________________________
.
12、(4分)不等式组的解集为_________.
13、(4分)已知直线与x轴的交点在、之间(包括、两点),则的取值范围是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知四边形为正方形,,点为对角线上一动点,连接,过点作.交于点,以、为邻边作矩形,连接.
(1)求证:矩形是正方形;
(2)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
15、(8分)先化简,再求值: ,其中x=
16、(8分)如图,▱ABCD中,,,垂足分别是E,求证:.
17、(10分)(1)解分式方程:;(2)化简:
18、(10分)按要求完成下列尺规作图(不写作法,保留作图痕迹)
(1)如图①,点A绕某点M旋转后,A的对应点为,求作点M.
(2)如图②,点B绕某点N顺时针旋转后,B的对应点为,求作点N.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
20、(4分)式子有意义的条件是__________.
21、(4分)命题“两直线平行,同位角相等”的逆命题是 .
22、(4分)五边形从某一个顶点出发可以引_____条对角线.
23、(4分)如图所示的围棋盘放在平面直角坐标系内,黑棋A的坐标为(1,2),那么白棋B的坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)一次函数CD:与一次函数AB:,都经过点B(-1,4).
(1)求两条直线的解析式;
(2)求四边形ABDO的面积.
25、(10分)如图,在直角坐标系中,已知直线与轴相交于点,与轴交于点.
(1)求的值及的面积;
(2)点在轴上,若是以为腰的等腰三角形,直接写出点的坐标;
(3)点在轴上,若点是直线上的一个动点,当的面积与的面积相等时,求点的坐标.
26、(12分)如图,等腰直角中,,点在上,将绕顶点沿顺时针方向旋转90°后得到.
(1)求的度数;
(2)当,时,求的大小;
(3)当点在线段上运动时(不与,重合),求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
利用多边形的内角和公式即可求出答案.
【详解】
解:n边形的内角和是(n-2)•180°,
n+2边形的内角和是n•180°,
因而(n+2)边形的内角和比n边形的内角和大n•180°-(n-2)•180=360°.
故选:D.
本题考查多边形的内角和公式,熟记内角和公式是解题的关键.
2、D
【解析】
根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.
【详解】
A.一组对边相等且平行的四边形是平行四边形,所以A选项错误。
B. 对角线相等的平行四边形是矩形,所以B选项错误;
C. 对角线互相垂直的平行四边形是菱形,所以C选项错误;
D. 对角线互相垂直平分且相等的四边形是正方形,所以D选项正确;
故选D
此题考查命题与定理,解题关键在于掌握各判定法则
3、B
【解析】
根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.
【详解】
解:BD=BC=6,
∴AD=AB﹣BD=4,
∵BC=BD,BE⊥CD,
∴CE=ED,又CF=FA,
∴EF=AD=2,
故选B.
本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
4、D
【解析】
观察函数图象得到,当x>-1时,直线L1:y=x+3的图象都在L2:y=mx+n的图象的上方,由此得到不等式x+3>mx+n的解集.
【详解】
解:∵直线L1:y=x+3与L2:y=mx+n交于点A(-1,b),
从图象可以看出,当x>-1时,直线L1:y=x+3的图象都在L2:y=mx+n的图象的上方,
∴不等式x+3>mx+n的解集为:x>-1,
故选:D.
本题考查一次函数与一元一次不等式的关系,关键是从函数图象中找出正确信息.
5、A
【解析】
由y随着x的增大而减小,可知,根据k,b的取值范围即可确定一次函数所经过的象限.
【详解】
解:y随着x的增大而减小,
又
一次函数的图像经过第一、二、四象限,不经过第三象限.
故答案为:A
本题考查了一次函数的图像与性质,确定k的取值范围是解题的关键.
6、C
【解析】
根据中心对称图形的概念解答即可.
【详解】
A.是中心对称图形,
B.是中心对称图形,
C.是中心对称图形,
D.不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合.
综上所述:是中心对称图形的有3个,
故选C.
本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.熟练掌握中心对称图形的定义是解题关键.
7、B
【解析】
把各选项中的二次根式化为最简二次根式,然后根据同类二次根式的定义判断即可.
【详解】
A、与不是同类二次根式,故A错误;
B、与是同类二次根式,故B正确;
C、与不是同类二次根式,故C错误;
D、与不是同类二次根式,故D错误;
故选:B.
本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.
8、C
【解析】
由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题.
【详解】
∵△ABC,△DBE都是等边三角形,
∴BC=BA,BD=BE,∠ABC=∠EBD,
∴∠DBC=∠EBA,
∴△DBC≌△EBA,
∴AE=DC,
∴AE+AD+DE=AD+CD+ED=AC+DE,
∵AC=BC=10,DE=BD=8,
∴△AED的周长为18,
故选C.
本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时正确寻找全等三角形解决问题,属于中考常考题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
由∠B=90°,∠BAD=45°,根据直角三角形两锐角互余求得∠BDA=45°,因此AB=BD,由∠DAC=15°,根据三角形外角性质可求得∠C=30°,由AC=2,根据直角三角形中30°的角所对的直角边等于斜边的一半,求得AB=1,即BD=1,根据勾股定理求得BC=,从而得到CD的长.
【详解】
解:∵∠B=90°,∠BAD=45°,
∴∠BDA=45°,AB=BD,
∵∠DAC=15°,
∴∠C=30°,
∴AB=BD=AC=×2=1,
∴BC===,
∴CD=BC-BD=-1.
故答案为-1.
本题考查了直角三角形两锐角互余的性质,30°的角所对的直角边等于斜边的一半,勾股定理等知识.
10、a<1.
【解析】
解出不等式组含a的解集,与已知不等式组 无解比较,可求出a的取值范围.
【详解】
解不等式3x﹣2≥ ,得:x≥1,
解不等式x﹣a≤0,得:x≤a,
∵不等式组无解,
∴a<1,
故答案为a<1.
此题考查解一元一次不等式组,解题关键在于掌握运算法则
11、两组对边分别相等的四边形是平行四边形.
【解析】
先根据分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,得出AB=DC,AD=BC,根据“两组对边分别相等的四边形是平行四边形”可判断四边形ABCD是平行四边形.
【详解】
解:根据尺规作图的作法可得,AB=DC,AD=BC,
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)
故答案为两组对边分别相等的四边形是平行四边形.
本题主要考查了平行四边形的判定,解题时注意:两组对边分别相等的四边形是平行四边形.符号语言为:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.
12、
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分.
【详解】
解:
解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
故答案为:.
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
13、
【解析】
根据题意得到的取值范围是,则通过解关于的方程求得的值,由的取值范围来求的取值范围.
【详解】
解:直线与轴的交点在、之间(包括、两点),
,
令,则,
解得,
则,
解得.
故答案是:.
本题考查了一次函数图象与系数的关系.根据一次函数解析式与一元一次方程的关系解得的值是解题的突破口.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析 (2)是定值,8
【解析】
(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,即可得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;
(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=8即可.
【详解】
(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,
∵正方形ABCD,
∴∠BCD=90°,∠ECN=45°,
∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,
∴四边形EMCN为正方形,
∵四边形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,
∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG为正方形,
(2)CE+CG的值为定值,理由如下:
∵矩形DEFG为正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四边形ABCD是正方形,
∵AD=DC,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,
∴△ADE≌△CDG(SAS),
∴AE=CG,
∴AC=AE+CE=AB=×4=8,
∴CE+CG=8是定值.
此题是四边形综合题,主要考查了正方形的性质,矩形的性质与判定,三角形的全等的性质和判定,勾股定理的综合运用,解本题的关键是作出辅助线,构造三角形全等,利用全等三角形的对应边相等得出结论.
15、,
【解析】
将原式进行因式分解化成最简结果,将x代入其中,计算得到结果.
【详解】
解:原式=
=
=
因为x= ,所以原式= .
考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.
16、证明见解析.
【解析】
根据平行四边形性质可得,,结合已知利用AAS易证,可得.
【详解】
证明:四边形ABCD是平行四边形,
,,
,
在和中,
,
≌,
.
本题考核知识点:平行四边形性质.解题关键点:熟记平行四边形性质.
17、(1);(2).
【解析】
(1)分式方程去分母转化为整式方程,求出整式方程的解可得x的值,经检验是分式方程的解;
(2)原式括号中两项通分并进行同分母减法计算,同时利用除法法则变形、约分即可求解.
【详解】
(1)解:
经检验:是原方程的解,所以原方程的解为.
(2)原式
.
本题考查了解分式方程以及分式方程的混合运算,熟练掌握运算法则是正确解题的关键.
18、 (1)见解析;(2)见解析
【解析】
(1)连结AA′,作AA′的垂直平分线与AA′的交点为M点;
(2)连结BB′,作BB′的垂直平分线得到BB′的中点,然后以BB′为直径作圆,则圆与BB′的垂直平分线的交点即为N点.
【详解】
解:如图①,点M即为所求;
如图②,点N即为所求.
① ②
考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.关键是熟练掌握线段垂直平分线的作法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1或8
【解析】
由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.
【详解】
设AA′=x,AC与A′B′相交于点E,
∵△ACD是正方形ABCD剪开得到的,
∴△ACD是等腰直角三角形,
∴∠A=15∘,
∴△AA′E是等腰直角三角形,
∴A′E=AA′=x,
A′D=AD−AA′=12−x,
∵两个三角形重叠部分的面积为32,
∴x(12−x)=32,
整理得,x−12x+32=0,
解得x=1,x=8,
即移动的距离AA′等1或8.
本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.
20、且
【解析】
式子有意义,则x-2≥0,x-3≠0,解出x的范围即可.
【详解】
式子有意义,则x-2≥0,x-3≠0,解得:,,故答案为且.
此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.
21、同位角相等,两直线平行
【解析】
逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行
本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用
22、1
【解析】
从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.
【详解】
解:从五边形的一个顶点出发有5﹣3=1条对角线,
故答案为:1.
本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.
23、(﹣1,﹣2) .
【解析】
1、本题主要考查的是方格纸中已知一点后直角坐标系的建立:先确定单位长度,再根据已知点的坐标确立原点,然后分别确定x轴和y轴.
2、本题中只要确立了直角坐标系,点B的坐标就可以很快求出.
【详解】
由题意及点A的坐标可确定如图所示的直角坐标系,
则B点和A点关于原点对称,所以点B的坐标是(-1,-2).
本题考查了建立直角坐标系,牢牢掌握该法是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)直线CD的解析式为:;直线AB的解析式为:;
(2)四边形ABDO的面积为7.5.
【解析】
(1)将B(﹣1,4)代入一次函数CD:与一次函数AB:,可以得到关于k、b的二元一次方程组,解方程组即可得到k、b的值,即可求出两条直线的解析式.
(2)由图可知四边形ABDO不是规则的四边形,利用割补法得到,分别算出△ABC与△DOC的面积即可算出答案.
【详解】
解:(1)∵一次函数CD:与一次函数AB:,都经过点B(﹣1,4),
∴将点B(﹣1,4)代入一次函数CD:与一次函数AB:,可得:
解得: ;
∴直线CD的解析式为:;直线AB的解析式为:;
(2)∵点A为直线AB与x轴的交点,令y=0得:解得:,
∴A(﹣3,0);
∵C为直线CD与x轴的交点,令y=0得:解得:,
∴C(3,0);
∵D为直线CD与y轴的交点,令x=0得y=3
∴D(0,3);
∴AC=6,OC=3,OD=3;
由图可知;
∴四边形ABDO的面积为7.5.
本题考查一次函数解析式的求法以及平面直角坐标系中图形面积的求法.会利用割补法求平面直角坐标系中图形面积是解题关键,在平面直角坐标系中求面积,一般以平行于坐标轴或在坐标轴上的边为底边,这样比较好算出图形的高.
25、(1)K=- ,的面积=3;(2)(2,0)或(2-)或C3(-2,0);(3)(4,-3)或(-4,9).
【解析】
①将代入直线可得K=- ,的面积=OB·OA==3.
②如详解图,分类讨论c1,c2,求坐标.
③如详解图,分类讨论p1,p2,求坐标.
【详解】
(1)将代入直线可得K=- ,点B坐标为(3,0),的面积=OB·OA·=2·3·=3.
②已知△ABC为等腰三角形,则AB=AC.可求出AB长为,以A为圆心,AB为半径画弧,与x轴交点有2个,易得C点坐标为C1(2,0)或C2(2-).
以B为圆心,BA为半径画弧与x轴交点有一个,坐标为C3(-2,0)
③设P点坐标为(x,)
∵S△BAM=,∴P点在线段AB外.
若P在线段BA延长线上时,S△PBM=S△BAM+S△PAM
=
=
=3,x=4.
所以P坐标为(4,-3),
若P在线段AB延长线上,S△PBM=S△PAM-S△BAM=﹣
若﹣=3,x=-4,则P点为(-4,9).
本题主要考察对称与函数方程的综合运用,能够根据图像求相关数据与方程是解题关键.
26、(1);(1);(3)见解析.
【解析】
(1)由于∠PCB=∠BCQ=45°,故有∠PCQ=90°;
(1)利用勾股定理得出AC的长,再利用旋转的性质得出AP=CQ,求得PC的长度,进而利用勾股定理得出PQ的长;
(3)先证明△PBQ也是等腰直角三角形,从而得到PQ1=1PB1=PA1+PC1.
【详解】
(1)∵△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ,
∴,
∴,
∴.
(1)当时,有,,
,
∴.
(3)由(1)可得,,,
,
∴是等腰直角三角形,是直角三角形.
∴,
∵,
∴,
故有.
考查了旋转的性质以及勾股定理和等腰直角三角形的性质等知识,得出旋转前后对应线段之间关系是解题关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年江西省安远县数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年江西省安远县数学九上开学检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北沧州数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年河北沧州数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。