2024-2025学年内蒙古满洲里市九上数学开学检测试题【含答案】
展开这是一份2024-2025学年内蒙古满洲里市九上数学开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )
A.87B.91C.103D.111
2、(4分)如图,将矩形纸片按如下步骤操作:将纸片对折得折痕,折痕与边交于点,与边交于点;将矩形与矩形分别沿折痕和折叠,使点,点都与点重合,展开纸片,恰好满足.则下列结论中,正确的有( )
①;②;③;④.
A.4个B.3个C.2个D.1个
3、(4分)将分式中的x,y的值同时扩大为原来的3倍,则分式的值( )
A.扩大6倍B.扩大9倍C.不变D.扩大3倍
4、(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是( )
A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b
5、(4分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=( )
A.B.4C.4或D.以上都不对
6、(4分)如图,中,,,点在反比例函数的图象上,交反比例函数的图象于点,且,则的值为( )
A.B.C.D.
7、(4分)下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )
A.0个B.1个 C.2个D.3个
8、(4分)已知一组数据:15,16,14,16,17,16,15,则这组数据的中位数是( )
A.17 B.16 C.15 D.14
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.
10、(4分)甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)
11、(4分)若方程有增根,则m的值为___________;
12、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.
13、(4分)一次函数的图象不经过__________象限
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.
(1)求直线y=kx+b(k≠0)的表达式;
(2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.
15、(8分)如图,在矩形ABCD中,AC、BD相交于点O,过点A作BD的平行线AE交CB的延长线于点E.
(1)求证:BE=BC;
(2)过点C作CF⊥BD于点F,并延长CF交AE于点G,连接OG.若BF=3,CF=6,求四边形BOGE的周长.
16、(8分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.
(1)如图1,当点与点重合时,求的长;
(2)设,,求与的函数关系式,并写出定义域;
(3)如图2,联结,当是等腰三角形时,求的长.
17、(10分)如图,在中,,平分,垂直平分于点,若,求的长.
18、(10分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ACE是以ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,),则D点的坐标是_____.
20、(4分)用换元法解方程时,如果设,那么得到关于的整式方程为_____.
21、(4分) “校安工程”关乎生命、关乎未来目前我省正在强力推进这重大民生工程.2018年,我市在省财政补助的基础上投人万元的配套资金用于“校安工程”,计划以后每年以相同的增长率投人配套资金,2020年我市计划投人“校安工程”配套资金 万元从2018年到2020年,我市三年共投入“校安工程”配套资金__________万元.
22、(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD的度数为__________度.
23、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知的三个顶点坐标为,,.
(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标 ;
(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标 ;
(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标 .
25、(10分)如图,在平面直角坐标系中,是原点,的顶点、的坐标分别为、,反比例函数的图像经过点.
(1)求点的坐标;
(2)求的值.
(3)将沿轴翻折,点落在点处.判断点是否落在反比例函数的图像上,请通过计算说明理由.
26、(12分)疫情发生后,口罩成了人们生活的必需品.某药店销售A,B两种口罩,今年3月份的进价如下表:
(1)已知B种口罩每包售价比A种口罩贵20元,用64元购买到A种口罩的数量和144元购买到B种口罩的数量相同,求A种口罩和B种口罩每包售价.
(2)为满足不同顾客的需求,该药店准备4月份新增购进进价为每包10元的C种口罩,A种和B种口罩仍按需购进,进价与3月份相同,A种口罩的数量是B种口罩的5倍,共花费12000元,则该店至少可以购进三种口罩共多少包?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.
【详解】
解:∵第①个图案中“●”有:1+3×(0+2)=7个,
第②个图案中“●”有:1+4×(1+2)=13个,
第③个图案中“●”有:1+5×(2+2)=21个,
第④个图案中“●”有:1+6×(3+2)=31个,
…
∴第9个图案中“●”有:1+11×(8+2)=111个,
故选:D.
本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.
2、B
【解析】
根据矩形的性质及等边三角形的性质即可判断.
【详解】
由对称性可得,故①正确;,易得四边形为菱形,∴,由对称性可得,∴,,均为等边三角形,∴,故③正确;∵,∴.
又∵,∴,故②正确;设,则,则,,∴,,,故④错误,故选B.
本题考查了四边形综合题,图形的翻折变化.该类题型一定要明确翻折前后对应的线段长以及角度大小.往往会隐含一些边角关系.需要熟练掌握各类四边形的性质与判定,以及特殊三角形的边角关系等.
3、B
【解析】
将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.
【详解】
解:∵把分式中的x与y同时扩大为原来的3倍,
∴原式变为:= =9×,
∴这个分式的值扩大9倍.
故选:B.
本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
4、D
【解析】
由图象对称轴为直线x=-,则-=-,得a=b,
A中,由图象开口向上,得a>0,则b=a>0,由抛物线与y轴交于负半轴,则c<0,则abc<0,故A错误;
B中,由a=b,则a-b=0,故B错误;
C中,由图可知当x=1时,y<0,即a+b+c<0,又a=b,则2b+c<0,故C错误;
D中,由抛物线的对称性,可知当x=1和x=-2时,函数值相等,则当x=-2时,y<0,即4a-2b+c<0,则4a+c<2b,故D正确.
故选D.
点睛:二次函数y=ax2+bx+c(a≠0)中,a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定.此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否.
5、A
【解析】
解:∵∠C=90°,AC=5,BC=3,∴AB===.故选A.
6、D
【解析】
过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得,,根据反比例函数比例系数的几何意义求得,从而求得,从而求得k的值.
【详解】
解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴
∴CE∥AD,∠CEO=∠BFO=90°
∵
∴∠COE+∠FOB=90°,∠ECO+∠COE=90°
∴∠ECO=∠FOB
∴△COE∽△OBF∽△AOD
又∵,
∴,
∴,
∴
∵点在反比例函数的图象上
∴
∴
∴,解得k=±8
又∵反比例函数位于第二象限,
∴k=-8
故选:D.
本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.
7、D
【解析】
①实数和数轴上的点是一一对应的,正确;
②无理数是开方开不尽的数,错误;
③负数没有立方根,错误;
④16的平方根是±4,用式子表示是±=±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.
错误的一共有3个,故选D.
8、B
【解析】
根据中位数的定义:将一组数据从小到大(或从大到小)排列,最中间的数据(或最中间两个数据)的平均数,就是这组数据的中位数,即可得出答案.
【详解】
把这组数据按照从小到大的顺序排列:
14,15,15,16, 16, 16, 17,
最中间的数据是16,
所以这组数据的中位数是16.
故选B.
本题考查了中位数的定义.熟练应用中位数的定义来找出一组数据的中位数是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①③④
【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.
【详解】
根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.
考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
10、乙.
【解析】
根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.
【详解】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案是:乙.
考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
11、-4或6
【解析】
方程两边同乘最简公分母(x-2)(x+2),化为整式方程,然后根据方程有增根,求得x的值,代入整式方程即可求得答案.
【详解】
方程两边同乘(x-2)(x+2),
得2(x+2)+mx=3(x-2)
∵原方程有增根,
∴最简公分母(x+2)(x-2)=0,
解得x=-2或2,
当x=-2时,m=6,
当x=2时,m=-4,
故答案为:-4或6.
本题考查了分式方程增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
12、14cm或16cm
【解析】
试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.
解:如图,∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当AB=BE=2cm,CE=3cm时,
则周长为14cm;
②当AB=BE=3cm时,CE=2cm,
则周长为16cm.
故答案为14cm或16cm.
考点:平行四边形的性质.
13、二
【解析】
根据一次函数的图像即可求解.
【详解】
一次函数过一三四象限,故不经过第二象限.
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)y=-2x+4;(2)S△BCM=1.
【解析】
(1)利用矩形的性质,得出点D坐标,再利用待定系数法求得函数解析式;
(2)由三角形的面积公式,即可解答.
【详解】
(1)∵在矩形ABCD中,AD=1,A(,0),B(2,0),
∴D(,1),C(2,1).
把B(2,0),D(,1)代入y=kx+b(k≠0)得:,解得:,
∴直线表达式为:y=-2x+4;
(2)连接CM.
∵B(2,0),
∴OB=2.
∴S△BCM=∙BC∙OB=×1×2=1.
本题主要考查待定系数法求一次函数解析式以及矩形的性质,掌握待定系数法,是解题的关键.
15、(1)详见解析;(2)3+1.
【解析】
(1)利用平行线等分线段定理证明即可.
(2)根据勾股定理得BC=,易证△CBF∽△DBC,得BD=15,根据矩形的性质和直角三角形的性质得OG=,利用平行线等分线段定理得BE=3,由中位线的性质得EG=6,进而即可求解.
【详解】
(1)∵四边形ABCD是矩形,
∴OC=OA,
∵OB∥AE,
∴BC=BE;
(2)∵CF⊥BD,
∴∠CFB=90°,
在Rt△BCF中,BC=,
∵四边形ABCD是矩形,
∴∠BCD=90°=∠BFC,AC=BD,
∵∠CBF=∠DBC,
∴△CBF∽△DBC,
∴,
∴BD==15,OB=OD=,
∴AC=BD=15,
∵CF⊥BD,BD∥AE,
∴CG⊥AE,
∴∠AGC=90°,
∵OC=OA,
∴OG=AC=,
∵OC=OA,OF∥AG,
∴CF=FG,
∴BC=BE=3,
∴EG=2BF=6,
∴四边形BOGE的周长=3+6++=3+1.
本题主要考查矩形的性质定理,平行线等分线段定理,直角三角形的性质定理,勾股定理,相似三角形的判定和性质定理,掌握上述定理,是解题的关键.
16、(1)BC=5;(2);(3)的长为或3或.
【解析】
(1)根据垂直平分线性质可知,设,,在中用勾股定理求出,即可解答;
(2)联结,,在中,,在中,,消去二次项即可得到与的函数关系式;根据点是边上的一动点结合(1)即可得出的定义域;
(3)分三种情况讨论,分别画出图形,根据相等的边用勾股定理列方程求解即可.
【详解】
解:(1)∵梯形中,,,,
∴,
∵是线段的垂直平分线,
∴,
在中,,
又∵,,设,,
,
∴,
∴.
(2)联结,,
∵是线段的垂直平分线,
∴
∵,,
∴
在中,
在中,
∴
∴
(3)在中,,,
∴,
当是等腰三角形时
①∵
∴
∵
∴
∴
②
取中点,联结
∵为的中点
∴为梯形中位线
∴
∵
∴为中点,
∴此时与重合
∴
③
联结并延长交延长线于点
此时.
∴,,
∴,
∴在中,,
∵
∴解得,(不合题意含去)
∴综上所述,当是等腰三角形时,的长为或3或
本题综合考查了矩形的性质、勾股定理解三角形、等腰三角形性质和判定、全等三角形性质和判定,灵活运用勾股定理求线段长是解题的关键.
17、的长为.
【解析】
根据角平分线的性质可得DE=CE,根据垂直平分线可得AE=BE,进而得到,设,则,根据直角三角形30°角所对直角边为斜边的一半得到关于x的方程,然后求解方程即可.
【详解】
解:设,则,
平分,,,
,
又垂直平分,
,
,
在中,,
,
,即,
解得.
即的长为.
本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.
18、(1)5;(2)当t=2或t=时,△PAE为直角三角形;
【解析】
(1)在直角△ADE中,利用勾股定理进行解答;
(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
【详解】
解:(1)∵矩形ABCD中,AB=9,AD=1,
∴CD=AB=9,∠D=90°,
∴DE=9﹣2=3,
∴AE==5;
(2)①若∠EPA=90°,t=2;
②若∠PEA=90°,(2﹣t)2+12+52=(9﹣t)2,
解得t=.
综上所述,当t=2或t=时,△PAE为直角三角形;
本题考查了四边形综合题,综合勾股定理,直角三角形的性质,一元二次方程的应用等知识点,要注意分类讨论,以防漏解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(3,0)
【解析】
∵点C与点E关于x轴对称,E点的坐标是(7,),
∴C的坐标为(7,).
∴CH=,CE=,
∵△ACE是以ABCD的对角线AC为边的等边三角形,
∴AC=.
∴AH=1.
∵OH=7,
∴AO=DH=2.
∴OD=3.
∴D点的坐标是(3,0).
20、
【解析】
将分式方程中的换,则=,代入后去分母即可得到结果.
【详解】
解:根据题意得:,
去分母得:.
故答案为:.
此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.
21、
【解析】
先设出年平均增长率,列出方程,解得年平均增长率,然后求出2019年的配套资金,将三年资金相加即可得到结果
【详解】
设配套资金的年平均增长率为x,则由题意可得,解之得x=0.4或x=-2.4(舍),故三年的共投入的资金为600+600×(1+0.4)+1176=2616(元),故填2616
本题考查一元二次方程的应用,解题关键在于列出方程得到平均增长率,重点注意最后是要求三年的资金总和,不要看错题
22、45°
【解析】
求出∠ACD=67.5°,∠BCD=22.5°,根据三角形内角和定理求出∠B=67.5°,根据直角三角形斜边上中线性质求出BE=CE,推出∠BCE=∠B=67.5°,代入∠ECD=∠BCE-∠BCD求出即可.
【详解】
∵∠ACD=3∠BCD,∠ACB=90°,
∴∠ACD=67.5°,∠BCD=22.5°,
∵CD⊥AB,
∴∠CDB=90°,
∴∠B=180°−90°−22.5°=67.5°,
∵∠ACB=90°,E是斜边AB的中点,
∴BE=CE,
∴∠BCE=∠B=67.5°,
∴∠ECD=∠BCE−∠BCD=67.5°−22.5°=45°.
本题考查三角形内角和定理和直角三角形斜边上中线性质,解题的关键是掌握三角形内角和定理和直角三角形斜边上中线性质.
23、中位数
【解析】
七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,
【详解】
解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.
故答案为:中位数.
考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)或或.
【解析】
(1)根据题意作出图形,即可根据直角坐标系求出坐标;
(2)根据题意作出图形,即可根据直角坐标系求出坐标;
(3)根据平行四边形的性质作出图形即可写出.
【详解】
解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;
(2)如图点的对应点的坐标;
(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:
或或
此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.
25、 (1);(2);(3)点不落在反比例函数图像上.
【解析】
(1)根据平行四边形的性质,可得的坐标;(2)已知的坐标,可得的值;(3)根据图形全等和对称,可得坐标,代入反比例函数,可判断是否在图像上.
【详解】
解:(1)∵平行四边形,
∴,
∵的坐标为,
∴,
∵的坐标为,
∴点的坐标为;
(2)把的坐标代入函数解析式得:,
∴.
(3)点不落在反比例函数图像上;
理由:根据题意得:的坐标为,
当时,,
∴点不落在反比例函数图像上.
本题综合考查平行四边形性质、反比例函数、图形翻折、全等等知识.
26、(1)种口罩每包售价16元,种口罩每包售价36元;(2)822包
【解析】
(1)设种口罩每包售价元,则种口罩每包售价元,根据等量关系:用64元购买到A种口罩的数量和144元购买到B种口罩的数量相同,列出方程并解方程即可.
(2)设种口罩买包,种口罩买包,则种口罩买包,根据等量关系:三种口罩共花费12000元,得到,进而得出总数量关于n的函数关系式,根据一次函数的最值求解即可.
【详解】
解:(1)设种口罩每包售价元,则种口罩每包售价元,依题意,得:
解得:
经检验:是原方程的解
∴,∴(元)
答:种口罩每包售价16元,种口罩每包售价36元
(2)设种口罩买包,种口罩买包,则种口罩买包
则
∵是5的倍数,∴
总数量为
∵,∴取最大值时,值最小
又∵
∴当时,总口罩最少为
(包)
∴该店至少可以购买进三种口罩共822包.
本题考查分式方程的实际应用及一次函数的实际应用,准确找到等量关系列出分式方程及一次函数解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年内蒙古牙克石市数学九上开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年内蒙古海拉尔区九上数学开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年内蒙古鄂托克旗九上数学开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。