![2024-2025学年山东省安丘市红沙沟镇红沙沟中学九上数学开学联考模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16187519/0-1727151475384/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年山东省安丘市红沙沟镇红沙沟中学九上数学开学联考模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16187519/0-1727151475452/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年山东省安丘市红沙沟镇红沙沟中学九上数学开学联考模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16187519/0-1727151475499/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年山东省安丘市红沙沟镇红沙沟中学九上数学开学联考模拟试题【含答案】
展开这是一份2024-2025学年山东省安丘市红沙沟镇红沙沟中学九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形都是由同样大小的▲按一定规律组成的,其中第1个图形中一共有6个▲:第2个图形中一共有9个▲;第3个图形中一共有12个▲;…授此规律排列,则第2019个图形中▲的个数为( )
A.2022B.4040C.6058D.6060
2、(4分)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为( )
A.5B.10C.6D.8
3、(4分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
4、(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( )
A.45,48B.44,45C.45,51D.52,53
5、(4分)已知反比例函数y=,下列结论中,不正确的是( ).
A.图象必经过点(1,m).B.y随x的增大而减少.
C.当m>0时,图象在第一、三象限内.D.若y=2m,则x=.
6、(4分)下列各式正确的是( )
A.B.C.D.
7、(4分)对于代数式(为常数),下列说法正确的是( )
①若,则有两个相等的实数根
②存在三个实数,使得
③若与方程的解相同,则
A.①②B.①③C.②③D.①②③
8、(4分)等腰三角形的腰长为5cm,底边长为6cm,则该三角形的面积是( )
A.16B.C.32D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.
10、(4分)某种服装原价每件80元,经两次降价,现售价每件1.8元,这种服装平均每次降价的百分率是________。
11、(4分)不等式的负整数解有__________.
12、(4分)我们知道:当时,不论取何实数,函数的值为3,所以直线一定经过定点;同样,直线一定经过的定点为______.
13、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.
(1)若OA=8,求k的值;
(2)若CB=BD,求点C的坐标.
15、(8分)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,1,8,1,10,1,1,1.乙的成绩如图所示(单位:环)
(1)分别计算甲、乙两人射击成绩的平均数;
(2)若要选拔一人参加比赛,应派哪一位?请说明理由.
16、(8分)列方程解应用题
某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?
17、(10分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:
请你根据图中的信息,解答下列问题:
(1)补全条形图;
(2)直接写出在这次抽测中,测试成绩的众数和中位数;
(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
18、(10分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.
(1)请直接写出点A的坐标:______;
(2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.
①求k的值;
②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;
③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.
20、(4分)已知m>0,则在平面直角坐标系中,点M(m,﹣m2﹣1)的位置在第_____象限;
21、(4分)已知的对角线,相交于点,是等边三角形,且,则的长为__________.
22、(4分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为__________.
23、(4分)已知y=++9,则(xy-64)2的平方根为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:
请你根据以上提供的信息解答下列问题:
(1)求一班参赛选手的平均成绩;
(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?
(3)求二班参赛选手成绩的中位数.
25、(10分)如图,在△ABC中,AC⊥BC,AC=BC,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.
(1)求证:△ACE≌△BCF.
(2)求证:BF=2AD,
(3)若CE=,求AC的长.
26、(12分)如图,在正方形网格中,每个小正方形的边长为1个单位长度。平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上。线段AB的两个端点也在格点上。
(1)若将线段AB绕点O顺时针旋转90°得到线段A’B’。试在图中画出线段A’B’。
(2)若线段A’’B’’与线段A’B’关于y轴对称,请画出线段A’’B’’。
(3)若点P是此平面直角坐标系内的一点,当点A、 B’、B’’、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=100求解即可.
【详解】
解:观察图形得:
第1个图形有3+3×1=6个三角形,
第2个图形有3+3×2=9个三角形,
第3个图形有3+3×3=12个三角形,
…
第n个图形有3+3n=3(n+1)个三角形,
当n=2019时,3×(2019+1)=6060,
故选D.
本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.
2、A
【解析】
试题分析:根据菱形的性质:菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可知每个直角三角形的直角边,根据勾股定理可将菱形的边长求出.
解:设AC与BD相交于点O,
由菱形的性质知:AC⊥BD,OA=AC=3,OB=BD=4
在Rt△OAB中,AB===1
所以菱形的边长为1.
故选A.
考点:菱形的性质.
3、D
【解析】
【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
Ⅱ、作线段的垂直平分线,观察可知图③符合;
Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
Ⅳ、作角的平分线,观察可知图①符合,
所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
故选D.
【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
4、A
【解析】
先把原数据按由小到大排列,然后根据众数、中位数的定义求解.
【详解】
数据从小到大排列为:44,45,45,51,52,54,
所以这组数据的众数为45,中位数为×(45+51)=48,
故选A.
本题考查了众数与中位数,熟练掌握众数与中位数的概念以及求解方法是解题的关键.一组数据中出现次数最多的数据叫做众数.一组数据按从小到大的顺序排列,位于最中间的数(或中间两个数的平均数)叫做这组数据的中位数.
5、B
【解析】
根据反比例函数的性质对各项进行判断即可.
【详解】
A. 图象必经过点(1,m),正确;
B. 当时,在每一个象限内y随x的增大而减少,错误;
C. 当m>0时,图象在第一、三象限内,正确;
D. 若y=2m,则x=,正确;
故答案为:B.
本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.
6、D
【解析】
根据二次根式的性质解答即可.
【详解】
解:A. ,错误;
B. ,错误;
C. ,错误;
D. ,正确.故选D.
本题考查了二次根式的性质的应用,能根据二次根式的性质把根式化成最简二次根式是解题的关键.
7、B
【解析】
根据根的判别式判断①;根据一元二次方程(为常数)最多有两个解判断②;将方程的解代入即可判断③.
【详解】
解:①
方程有两个相等的实数根.
①正确:
②一元二次方程(为常数)最多有两个解,
②错误;
③方程的解为,
将x=-2代人得,
,
③正确.
故选:B.
本题考查的知识点是一元二次方程根的情况,属于比较基础的题目,易于掌握.
8、D
【解析】
作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.
【详解】
如图,作底边BC上的高AD,
则AB=5cm,BD=×6=3cm,
∴AD=,
∴三角形的面积为:×6×4=12cm .
故选D
此题考查等腰三角形的性质,勾股定理,解题关键在于作出图形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.
【详解】
依题可得,任取两个数的积作为k的值的可能情况有6种(1,2)、(1,3)、(1,-4)、
(2,3)、(2,-4)、(3,-4),
要使反比例函数y=kx的图象在第二、四象限,则k<0,
这样的情况有3种即(1,-4)、(2,-4)、(3,-4),
故概率为:=.
本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.
10、10%
【解析】
设这种服装平均每件降价的百分率是x,则降一次价变为80(1-x),降两次价变为80(1-x)2,而这个值等于1.8,从而得方程,问题得解.
【详解】
解:设这种服装平均每件降价的百分率是x,由题意得
80(1-x)2=1.8
∴(1-x)2=0.81
∴1-x=0.9或1-x=-0.9
∴x=10%或x=1.9(舍)
故答案为10%.
本题是一元二次方程的基本应用题,明白降两次价变为原来的(1-x)2倍是解题的关键.
11、-5、-4、-3、-2、-1
【解析】
求出不等式的解集,取解集范围内的负整数即可.
【详解】
解:移项得:
合并同类项得:
系数化为1得:
即
所以原不等式的负整数解为:-5、-4、-3、-2、-1
故答案为:-5、-4、-3、-2、-1
本题主要考查了求不等式的整数解,确定不等式的解集是解题的关键.
12、
【解析】
先将y=(k-2)x+3k化为:y=(x+3)k-2x,可得当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,即可得到直线y=(k-2)x+3k一定经过的定点为(-3,6).
【详解】
根据题意,y=(k-2)x+3k可化为:y=(x+3)k-2x,
∴当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,
∴直线y=(k-2)x+3k一定经过的定点为(-3,6),
故答案为:(-3,6).
本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.
13、1
【解析】
根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.
【详解】
解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,
∵线段AC的垂直平分线DE,
∴AE=EC,
∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,
故答案为1.
本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)1;(2)(3,2)
【解析】
(1) 过C作CM⊥AB,CN⊥y轴,利用勾股定理求出CM的长,结合OA的长度,则C点坐标可求,因C在图象上,把C点代入反比例函数式求出k即可;
(2)已知CB=BD,则AD长可求,设OA=a, 把C、D点坐标用已知数或含a的代数式表示,因C、D都在反比例函数图象上,把C、D坐标代入函数式列式求出a值即可.
【详解】
(1)解:过C作CM⊥AB,CN⊥y轴,垂足为M、N,
∵CA=CB=5,AB=6,
∴AM=MB=3=CN,
在Rt△ACD中,CD= =4,
∴AN=4,ON=OA﹣AN=8﹣4=4,
∴C(3,4)代入y= 得:k=1,
答:k的值为1.
(2)解:∵BC=BD=5,
∴AD=6﹣5=1,
设OA=a,则ON=a﹣4,C(3,a﹣4),D(1,a)
∵点C、D在反比例函数的图象上,
∴3(a﹣4)=1×a,
解得:a=6,
∴C(3,2)
答:点C的坐标为(3,2)
本题主要考查反比例函数的几何应用,解题关键在于能够做出辅助线,利用勾股定理解题.
15、(1)甲:8.5,乙:8.5;(2)应派甲去参加比赛,理由见解析.
【解析】
(1)根据平均数的公式:平均数=所有数之和再除以数的个数;
(2)根据方差公式计算即可.
【详解】
解:(1)甲、乙两人射击成绩的平均成绩分别为:
甲=,
乙=;
(2)甲=,
乙=,
所以甲同学的射击成绩比较稳定,应派甲去参加比赛.
本题考查平均数、方差的定义:方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.平均数反映了一组数据的集中程度,求平均数的方法是所有数之和再除以数的个数;方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.
16、原计划每天加工20套.
【解析】
设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.
【详解】
解:设原计划每天加工x套,由题意得:
解得:x=20,
经检验:x=20是原方程的解.
答:原计划每天加工20套.
考点:分式方程的应用
17、(1)见解析;(2)众数:5,中位数:5;(3)该区体育中考选报引体向上的男生能获得满分的同学有810名.
【解析】
(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数确定a的值,再补全条形图即可;
(2)根据众数与中位数的定义求解即可;
(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.
【详解】
解:(1) 设引体向上6个的学生有x人,由题意得 ,解得x=50.
条形统计图补充如下:
(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;
共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5;
(3)(名)
答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.
本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.
18、(1)(0,1);(2)①k=;②N(-3,);③直线 l2的解析式为y=x+1.
【解析】
(1)令,求出相应的y值,即可得到A的坐标;
(2)①先设出P的坐标,然后通过点的平移规律得出平移后 的坐标,然后将代入 中即可求出k的值;
②作AB的中垂线与y轴交于M点,连结BM,分别作AM,BM的平行线,相交于点N,则四边形AMBN是菱形, 设M(0,t),然后利用勾股定理求出t的值,从而求出OM的长度,然后利用BN=AM求出BN的长度,即可得到N的坐标;
③先根据题意画出图形,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D,利用等腰三角形的性质和AAS证明△AOB≌△BDC,得出AO=BD,OB=DC,进一步求出点C的坐标,然后利用待定系数法即可求出直线l2的解析式.
【详解】
(1)∵y=kx+1与y轴交于点A,
令, ,
∴A(0,1).
(2)①由题意得:P(m,km+1),
∵将点P向左平移3个单位,再向下平移1个单位,得点P′,
∴P′(m-3,km),
∵P′(m-3,km)在射线AB上,
∴k(m-3)+1=km,
解得:k=.
②如图,作AB的中垂线与y轴交于M点,连结BM,过点B作AM的平行线,过点A作BM的平行线,两平行线相交于点N,则四边形AMBN是菱形.
,
,
当 时,,解得 ,
∴ .
设M(0,t),则AM=BM=1-t,
在Rt△BOM中,OB2+OM2=BM2,
即32+t2=(1-t)2,
解得:t=,
∴M(0,),
∴OM=,BN=AM=1-=,
∴N(-3,).
③如图,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D.则∠ABC=∠BDC=90°,
∵∠BAC=15°,
∴△ABC是等腰直角三角形,
∴AB=BC,∠ABO+∠CBD=90°,
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠CBD,
在和中,
∴△AOB≌△BDC(AAS),
∴AO=BD=1,OB=DC=3,
∴OD=OB+BD=3+1=7,
∴C(-7,3),
设直线 l2的解析式为:y=ax+1,
则-7a+1=3,
解得:a=.
∴直线 l2的解析式为:y=x+1.
本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线,构造出全等三角形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5
【解析】
根据题意可知这组数据的和是24,列方程即可求得x,然后求出众数.
【详解】
解:由题意可知,1+3+x+4+5+6=4×6,
解得:x=5,
所以这组数据的众数是5.
故答案为5.
此题考查了众数与平均数的知识.众数是这组数据中出现次数最多的数.
20、四
【解析】
直接利用各象限内点的坐标特点得出点的位置.
【详解】
,
,
点的位置在第四象限.
故答案为:四.
此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.
21、.
【解析】
根据等边三角形的性质得出AD=OA=OD,利用平行四边形的性质和矩形的判定解答即可.
【详解】
解:∵△AOD是等边三角形,
∴AD=OA=OD=4,
∵四边形ABCD是平行四边形,
∴OA=AC,OD=BD,
∴AC=BD=8,
∴四边形ABCD是矩形,
在Rt△ABD中,,
故答案为:.
此题考查平行四边形的性质,关键是根据平行四边形的性质解答即可.
22、59
【解析】
由题意得,,解得a=59.
故答案为59.
23、±1
【解析】
根据二次根式有意义的条件可得,再解可得x的值,进而可得y的值,然后可得(xy-64)2的平方根.
【详解】
解:由题意得:,
解得:x=7,
则y=9,
(xy-64)2=1,
1的平方根为±1,
故答案为:±1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
二、解答题(本大题共3个小题,共30分)
24、(1)分;(2)人;(3)80分
【解析】
(1)根据算术平均数的定义列式计算可得;
(2)总人数乘以A、B、C等级所占百分比即可;
(3)根据中位数的定义求解即可.
【详解】
解:(1)一班参赛选手的(分)
(2)二班成绩在级以上(含级)(人)
(3)二班、人数占,
参赛学生共有20人,因此中位数落在C级,
二班参赛选手成绩的中位数为80分.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
25、 (1)证明见解析;(2)证明见解析;(3)2+.
【解析】
(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE;
(2)由(1)得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;
(3)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.
【详解】
(1)∵AC⊥BC,BD⊥AE
∴∠FCB=∠BDA=90°
∠CBF+∠CFB=90°,∠DAF+∠AFD=90°
∵∠CFB=∠AFD
∴∠CBF=∠CAE
∵AC=BC
∴△ACE≌△BCF
(2)由(1)知△ACE≌△BCF得AE=BF
∵BE=BA,BD⊥AE
∴AD=ED,即AE=2AD
∴BF=2AD
(3)由(1)知△ACE≌△BCF
∴CF=CE=
∴在Rt△CEF中,EF==2,
∵BD⊥AE,AD=ED,
∴AF=FE=2,
∴AC=AF+CF=2+.
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键.
26、(1)见解析;(2)见解析;(3)(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
【解析】
(1)利用网格特点和旋转的性质画出点A、B的对应点A′、B′,从而得到线段A′B′;
(2)利用关于y轴对称的点的坐标特征写出A″、B″点的坐标,然后描点即可得到线段A″B″;
(3)分别以AB″、AB′和B″B′为对角线画平行四边形,从而得到P点位置,然后写出对应点的坐标.
【详解】
(1)如图,线段A′B′为所作;
(2)如图,线段A″B″为所作;
(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
此题考查作图-轴对称变换,平行四边形的性质,作图-旋转变换,解题关键在于掌握作图法则.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份广东省深圳市红桂中学等校2024-2025学年九年级上学期开学考试数学试题(解析版),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省深圳市红桂中学等校2024-2025学年九年级上学期开学考试数学试题(无答案),共4页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年山东省安丘市红沙沟镇红沙沟中学九年级数学第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,是一元二次方程的是等内容,欢迎下载使用。