![2024-2025学年山东省菏泽市东明县数学九年级第一学期开学调研模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16187607/0-1727152952714/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年山东省菏泽市东明县数学九年级第一学期开学调研模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16187607/0-1727152952786/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年山东省菏泽市东明县数学九年级第一学期开学调研模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16187607/0-1727152952824/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年山东省菏泽市东明县数学九年级第一学期开学调研模拟试题【含答案】
展开
这是一份2024-2025学年山东省菏泽市东明县数学九年级第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是( )
A.y1<y2B.y1>y2C.y1=y2D.不能确定
2、(4分)下列函数关系式中,y是x的反比例函数的是
A.B.C.D.
3、(4分)若把分式中的和都扩大为原来的5倍,那么分式的值( )
A.扩大为原来的5倍B.扩大为原来的10倍C.不变D.缩小为原来的倍
4、(4分)已知小强家、体育馆、文具店在同一直线上如图中的图象反映的过程是:小强从家跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后散步回家.下列信息中正确的是( )
A.小强在体育馆花了20分钟锻炼
B.小强从家跑步去体育场的速度是10km/h
C.体育馆与文具店的距离是3km
D.小强从文具店散步回家用了90分钟
5、(4分)如图,一根木棍斜靠在与地面OM垂直的墙面ON上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到墙角点O的距离( )
A.不变B.变小C.变大D.先变大后变小
6、(4分)下列式子中,属于最简二次根式的是( )
A.B.C.D.
7、(4分)某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同若设乙工人每小时搬运x件电子产品,可列方程为
A.B.C.D.
8、(4分)如图,E,F分别是正方形ABCD边AD、BC上的两定点,M是线段EF上的一点,过M的直线与正方形ABCD的边交于点P和点H,且PH=EF,则满足条件的直线PH最多有( )条
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一种什锦糖由价格为12元/千克,18元/千克的两种糖果混合而成,两种糖果的比例是2:1,则什锦糖的每千克的价格为_____________
10、(4分)平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.
11、(4分)数据,,,,,的方差_________________
12、(4分)因式分解: .
13、(4分)的小数部分为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).
(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.
(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.
15、(8分)计算:(1)(1-)+|1-2|+×.
(2)(+2)÷-.
16、(8分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:1.请根据下表信息,确定谁会被聘选为班长:
17、(10分)如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.
18、(10分)2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品.已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.
(1)每个笔袋、每筒彩色铅笔原价各多少元?
(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.若买x个笔袋需要y1元,买x筒彩色铅笔需要y2元.请用含x的代数式表示y1、y2;
(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D为顶点的四边形是平行四边形,则D点的坐标为___________________.
20、(4分)在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.
21、(4分)如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE=______________cm.
22、(4分)某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设A型包装箱每个可以装件文具,根据题意列方程为 .
23、(4分)如图,于,于,且,,,则_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:()0﹣|﹣2|﹣.
25、(10分)(1)计算:.
(2)解方程:x2﹣5x=0
26、(12分)数学活动课上,老师提出了一个问题:如图1,A、B两点被池塘隔开,在AB外选一点,连接AC和BC,怎样测出A、B两点的距离?
(活动探究)学生以小组展开讨论,总结出以下方法:
⑴如图2,选取点C,使AC=BC=a,∠C=60°;
⑵如图3,选取点C,使AC=BC=b,∠C=90°;
⑶如图4,选取点C,连接AC,BC,然后取AC、BC的中点D、E,量得DE=c…
(活动总结)
(1)请根据上述三种方法,依次写出A、B两点的距离.(用含字母的代数式表示)并写出方法⑶所根据的定理.AB=________,AB=________,AB=________.定理:________.
(2)请你再设计一种测量方法,(图5)画出图形,简要说明过程及结果即可.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先根据题意判断出一次函数的增减性,再根据x1<x1即可得出结论.
【详解】
∵一次函数y=kx中,k<0,
∴函数图象经过二、四象限,且y随x的增大而减小,
∵x1<x1,
∴y1>y1.
故选A.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
2、D
【解析】
根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),可以判定函数的类型.
【详解】
A. 是一次函数,故此选项错误;
B. 是正比例函数,故此选项错误;
C. 不是反比例函数,故此选项错误;
D. 是反比例函数,故此选项正确。
故选D.
本题考查反比例函数的定义,熟练掌握反比例函数的定义对选项进行判断是解题关键.
3、A
【解析】
把和都扩大为原来的5倍,代入原式化简,再与原式比较即可.
【详解】
和都扩大为原来的5倍,得
,
∴把分式中的和都扩大为原来的5倍,那么分式的值扩大为原来的5倍.
故选A.
本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
4、B
【解析】
根据图象信息即可解决问题.
【详解】
解:A.小强在体育馆花了分钟锻炼,错误;
B.小强从家跑步去体育场的速度是,正确;
C.体育馆与文具店的距高是,错误;
D.小强从文具店散步回家用了分钟,错误;
故选:B.
本题考查了函数图象,观察函数图象,逐一分析四条说法的正误是解题的关键.
5、A
【解析】
连接OP,易知OP就是斜边AB上的中线,由于直角三角形斜边上的中线等于斜边的一半,那么OPAB,由于AB不变,那么OP也就不变.
【详解】
不变.连接OP.在Rt△AOB中,OP是斜边AB上的中线,那么OPAB,由于木棍的长度不变,所以不管木棍如何滑动,OP都是一个定值.
故选A.
本题考查了直角三角形斜边上的中线,解题的关键是知道木棍AB的长度不变,也就是斜边不变.
6、B
【解析】
根据最简二次根式的定义判断即可.
【详解】
解:A、,不是最简二次根式,故A选项错误;
B、是最简二次根式,故B选项正确;
C、,不是最简二次根式,故C选项错误;
D、,不是最简二次根式,故D选项错误.
此题考查最简二次根式问题,在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.
7、C
【解析】
乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,根据甲的工效乙的工效,列出方程即可.
【详解】
乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,
依题意得:,
故选C.
本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键
错因分析:中等题.选错的原因是:未能读懂题意导致不能列出正确的等量关系.
8、C
【解析】
如图1,过点B作BG∥EF,过点C作CN∥PH,利用正方形的性质,可证得AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,再证明BG=CN,利用HL证明Rt△ABG≌Rt△CBN,根据全等三角形的对应角相等,可知∠ABG=∠BCN,然后证明PH⊥EF即可,因此过点M作EF的垂线满足的有一条直线;图2中还有2条,即可得出答案.
【详解】
解:如图1,过点B作BG∥EF,过点C作CN∥PH,
∵正方形ABCD,
∴AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,
∴四边形BGEF,四边形PNCH是平行四边形,
EF=BG,PH=CN,
∵PH=EF,
∴BG=CN,
在Rt△ABG和Rt△CBN中,
∴Rt△ABG≌Rt△CBN(HL)
∴∠ABG=∠BCN,
∵∠ABG+∠GBC=90°
∴∠BCN+∠GBC=90°,
∴BG⊥CN,
∴PH⊥EF,
∴过点M作EF的垂线满足的有一条直线;
如图2
图2中有两条P1H1,P2H2,
所以满足条件的直线PH最多有3条,
故答案为:C
本题考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、14元/千克
【解析】
依据这种什锦糖总价除以总的千克数,即可得到什锦糖每千克的价格.
【详解】
解:由题可得,这种什锦糖的价格为:,
故答案为:14元/千克.
本题主要考查了算术平均数,对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.
10、1
【解析】
根据点到x轴的距离是其纵坐标的绝对值解答即可.
【详解】
点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.
故答案为:1.
本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.
11、;
【解析】
首先计算平均数,再利用方差的公式计算即可.
【详解】
根据题意可得平均数
所以
故答案为1
本题主要考查方差的计算公式,应当熟练掌握,这是数据统计里一个比较重要的概念.
12、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
13、﹣1.
【解析】
解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.
三、解答题(本大题共5个小题,共48分)
14、 (1) 800 ;(2)见解析.
【解析】
(1)根据两点的坐标求y1(万m3)与时间x(天)的函数关系式,并把x=20代入计算即可得;
(2)分两种情况:①当0≤x≤20时,y=y1,②当20
相关试卷
这是一份2024-2025学年山东省菏泽市牡丹区九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省菏泽市鄄城县数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省菏泽市部分市县九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。