2024-2025学年山东省济南市历下区数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,正方形ABCD的边长为6,M在DC上,且DM=4,N是AC上的动点,则DN+MN的最小值是( )
A.B.C.D.
2、(4分)如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是( ).
A.x2B.x2或1x0
C.1x0D.x2或x1
3、(4分)在平面直角坐标系中,已知点A(1,2),B(2,1),C(﹣1,﹣3).D(﹣2,3),其中不可能与点E(1,3)在同一函数图象上的一个点是( )
A.点A B.点B C.点C D.点D
4、(4分)如图,将直径为2cm的半圆水平向左平移2cm,则半圆所扫过的面积(阴影部分)为( )
A.πcm2B.4 cm2C.cm2D.cm2
5、(4分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )
A.140米B.150米C.160米D.240米
6、(4分)如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值( )
A.增大B.减小C.不变D.先增大再减小
7、(4分)如图,在方格中有两个涂有阴影的图形M、N,每个小正方形的边长都是1个单位长度,图(1)中的图形M平移后位置如图(2)所示,以下对图形M的平移方法叙述正确的是( )
A.先向右平移2个单位长度,再向下平移3个单位长度
B.先向右平移1个单位长度,再向下平移3个单位长度
C.先向右平移1个单位长度,再向下平移4个单位长度
D.先向右平移2个单位长度,再向下平移4个单位长度
8、(4分)用一些相同的正方形,摆成如下的一些大正方形,如图第(1)个图中小正方形只有一个,且阴影面积为1,第(2)个图中阴影小正方形面积和3;第(3)个图中阴影小正方形面积和为5,第(9)个图中阴影小正方形面积和为( )
A.11B.13C.15D.17
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算的结果是_____。
10、(4分)函数中,自变量x的取值范围是_____.
11、(4分)如图,一张纸片的形状为直角三角形,其中,,,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为______cm.
12、(4分)若关于x的方程-2=会产生增根,则k的值为________
13、(4分)如下图,用方向和距离表示火车站相对于仓库的位置是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数y= x+6的图象与x轴、y轴分别交于A、B两点,点C与点A关于y轴对称.动点P、Q分别在线段AC、AB上(点P与点A、C不重合),且满足∠BPQ=∠BAO.
(1)求点A、 B的坐标及线段BC的长度;
(2)当点P在什么位置时,△APQ≌△CBP,说明理由;
(3)当△PQB为等腰三角形时,求点P的坐标.
15、(8分) “五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.
16、(8分)中, 分别是 上的不动点.且 ,点 是 上的一动点.
(1)当 时(如图1),求 的度数;
(2)若 时(如图2),求 的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.
17、(10分)如图,在Rt△ABC中,∠C=90°,E是AB上的点,且AE=AC,DE⊥AB交BC于D,AC=6,BC=8,CD=1.
(1)求DE的长;
(2)求△ADB的面积.
18、(10分)(1)化简;(m+2+)•
(2)先化简,再求值;(+x+2)÷,其中|x|=2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,某港口P位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12n mile,“长峰”号每小时航行16n mile,它们离开港东口1小时后,分别到达A,B两个位置,且AB=20n mile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.
20、(4分)如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.
21、(4分)已知一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数式_____.(答案不唯一)
22、(4分)如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则DOE的周长为_____.
23、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)
(2)()﹣()
25、(10分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,图中已给出△ABC的一边AB的位置.
(1)请在所给的网格中画出边长分别为2,,4的一个格点△ABC;
(2)根据所给数据说明△ABC是直角三角形.
26、(12分)某学校计划在总费用元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.
(1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.
(2)请给出最节省费用的租车方案.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
连BD,BM,BM交AC于N′,根据正方形的性质得到B点与D点关于AC对称,则有N′D+N′M=BM,利用两点之间线段最短得到BM为DN+MN的最小值,然后根据勾股定理计算即可.
【详解】
连BD,BM,BM交AC于N′,如图,
∵四边形ABCD为正方形,
∴B点与D点关于AC对称,
∴N′D=N′B,
∴N′D+N′M=BM,
∴当N点运动到N′时,它到D点与M点的距离之和最小,最小距离等于MB的长,
而BC=CD=6,DM=4,
∴MC=2,
∴BM= .
故选:B.
此题考查轴对称-最短路线问题,勾股定理,正方形的性质,解题关键在于作辅助线.
2、B
【解析】
根据交点坐标及图象的高低即可判断取值范围.
【详解】
要使,则一次函数的图象要高于反比例函数的图象,
∵两图象交于点A(2,1)、B(-1,-2),
∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,
∴使的x的取值范围是:或.
故选:B.
本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.
3、A
【解析】
根据“对于x的每一个确定的值,y都有唯一的值与其对应”,可知点A不可能与E在同一函数图象上.
【详解】
根据函数的定义可知:点A(1,2)不可能与点E(1,3)在同一函数图象上.
故选A.
本题考查了函数的概念,明确函数的定义是关键,尤其要正确理解:对于x的每一个确定的值,y都有唯一的值与其对应.
4、B
【解析】
根据平移后阴影部分的面积恰好是长1cm,宽为1cm的矩形,再根据矩形的面积公式即可得出结论.
【详解】
解:∵平移后阴影部分的面积恰好是长为1cm,宽为1cm的矩形,
∴S阴影=1×1=4cm1.
故选B.
本题考查的是图形平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.
5、B
【解析】
由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.
【详解】
已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.
本题考查多边形内角与外角,熟记公式是关键.
6、C
【解析】
首先过A作AG⊥BD于G.利用面积法证明PE+PF=AG即可.
【详解】
解:如图,过A作AG⊥BD于G,
则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),
∵S△AOD=S△AOP+S△POD,四边形ABCD是矩形,
∴OA=OD,
∴PE+PF=AG,
∴PE+PF的值是定值,
故选C.
本题考查矩形的性质、等腰三角形的性质、三角形的面积计算.解决本题的关键是证明等腰三角形底边上的任意一点到两腰距离的和等于腰上的高.
7、B
【解析】
根据平移前后图形M中某一个对应顶点的位置变化情况进行判断即可.
【详解】
由图(1)可知,图M先向右平移1个单位长度,再向下平移3个单位长度,可得题图(2),
故选B
本题主要考查了图形的平移,平移由平移方向和平移距离决定,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.
8、D
【解析】
根据前4个图中阴影小正方形的面积和找到规律,然后利用规律即可解题.
【详解】
第(1)个面积为12﹣02=1;
第(2)个面积为22﹣12=3;
第(3)个面积为32﹣22=5;
…
第(9)个面积为92﹣82=17;
故选:D.
本题为图形规律类试题,找到规律是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2-1分解因式,约分即可得到化简结果.
【详解】
解:
故答案为:
此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.
10、x≠1
【解析】
根据分母不等于0,可以求出x的范围;
【详解】
解:(1)x-1≠0,解得:x≠1;
故答案是:x≠1,
考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
11、3
【解析】
在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=6,DE=DC,∠AED=∠C=90°,所以BE=AB-AE=4,设CD=x,则BD=8-x,然后在Rt△BDE中利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.
【详解】
在Rt△ABC中,
∵AC=6,BC=8,
∴AB==10,
∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,
∴AE=AC=6,DE=DC,∠AED=∠C=90°,
∴BE=AB-AE=10-6=4,
设CD=x,则BD=8-x,
在Rt△BDE中,
∵BE2+DE2=BD2,
∴42+x2=(8-x)2,解得x=3,
即CD的长为3cm.
故答案为3
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
12、
【解析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
【详解】
∵关于x的方程-2=会产生增根,
∴x-3=0,
∴x=3.
把-2=的两边都乘以x-3得,
x-2(x-3)=-k,
把x=3代入,得
3=-k,
∴k=-3.
故答案为:-3.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
13、东偏北20°方向,距离仓库50km
【解析】
根据方位角的概念,可得答案.
【详解】
解:火车站相对于仓库的位置是东偏北20°方向,距离仓库50km,
故答案为:东偏北20°方向,距离仓库50km.
本题考查了方向角的知识点,解答本题的关键是注意是火车站在仓库的什么方向.
三、解答题(本大题共5个小题,共48分)
14、A(-4,0),B(0,3),BC=1;(1,0);(1,0)或(,0).
【解析】
试题分析:根据函数解析式和勾股定理求出点A和点B的坐标以及BC的长度;根据全等的性质得出点P的坐标;本题分PQ=PB,BQ=BP乙BQ=PQ三种情况分别进行计算得出点P的坐标.
试题解析:(1)点A坐标是(-4,0),点B的坐标(0,3),BC=1.
(2)点P在(1,0)时
(3)i)当PQ=PB时,△APQ≌△CBP, 由(1)知此时点P(1,0)
ii)当BQ=BP时,∠BQP=∠BPQ ∠BQP是△APQ的外角,∠BQP>∠BAP,又∠BPQ=∠BAO
∴这种情况不可能
iii)当BQ=PQ时,∠QBP=∠QPB 又∠BPQ=∠BAO,∴∠QBP=∠BAO,则AP=4+x,BP=
∴ 4+x=,解得x=,此时点P的坐标为:(,0)
考点:一次函数的应用
15、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【解析】
试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80>30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.
16、(1);(2)相同,.
【解析】
(1)根据等腰三角形的性质和三角形的内角和即可得到结论;
(2)根据全等三角形的判定和性质和三角形的内角和即可得到结论.
【详解】
(1)
(2)相同,理由是:
又
本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练正确全等三角形的判定和性质是解题的关键.
17、(1)1;(2)15
【解析】
(1)通过证明,即可得出DE的长;
(2)根据三角形面积公式求解即可.
【详解】
(1)∵DE⊥AB
∴
∴在中
∴
∴
(2)∵BC=8,CD=1
∴
∴
本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理、三角形面积公式是解题的关键.
18、(1)m+1;(2)1
【解析】
(1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.
(2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.
【详解】
解:(1)原式==m+1;
(2)原式= ,
由|x|=2,得到x=2或﹣2(舍去),
当x=2时,原式=1.
此题考查分式的化简求值,解题关键在于掌握运算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、南偏东30°
【解析】
直接得出AP=12 n mile,PB=16 n mile,AB=20 n mile,利用勾股定理逆定理以及方向角得出答案.
【详解】
如图,
由题意可得:AP=12 n mile,PB=16 n mile,AB=20 n mile,
∵122+162=202,
∴△APB是直角三角形,
∴∠APB=90°,
∵“远洋”号沿着北偏东60°方向航行,
∴∠BPQ=30°,
∴“长峰”号沿南偏东30°方向航行;
故答案为南偏东30°.
此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.
20、4
【解析】
根据题意可证明四边形EFGH为菱形,故可求出面积.
【详解】
∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,
∵E、F、G、H分别是四条边的中点,
∴AE=DG=BE=CG,AH=DH=BF=CF,
∴△AEH≌△DGH≌△BEF≌△CGF(SAS),
∴EH=EF=FG=GH,
∴四边形EFGH是菱形,
∵HF=2,EG=4,
∴四边形EFGH的面积为HF·EG=×2×4=4.
此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.
21、y=x+1
【解析】
∵一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,∴k>0,图象经过点(0,1),∴b=1,只要符合上述条件即可.
【详解】
解:只要k>0,b>0且过点(0,1)即可,由题意可得,k>0,b=1,符合上述条件的函数式,例如y=x+1(答案不唯一)
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
22、1
【解析】
由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,OB=OD=BD=5,
∵平行四边形ABCD的周长为36,
∴BC+CD=18,
∵点E是CD的中点,
∴OE是△BCD的中位线,DE=CD,
∴OE=BC,
∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=1;
故答案为:1.
本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键.
23、1
【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.
【详解】
解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.
点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)-1;(2)2+3.
【解析】
(1)利用积的乘方得到原式,然后根据平方差公式计算;
(2)先把二次根式化为最简二次根式,然后去括号合并即可.
【详解】
(1)
=[(+2)(﹣2)]2019
=(3﹣4)2019
=﹣1;
(2)()﹣()
=4+2﹣2
=2+3.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
25、(1)画图见解析;(2)证明见解析
【解析】试题分析(1) 利用勾股定理即可作出边长为2,,4的一个格点△ABC;(2)根据勾股定理得逆定理即可证明.
试题解析:(1)如图所示:
(2)由图可知,AB=4,BC=2,AC=,
∵AB2+BC2=20,AC2=20,
∴AB2+BC2=AC2,
∴△ABC是直角三角形.
26、(1)6,6,6;(2)租乙种客车2辆,甲种客车4辆.
【解析】
(1)根据师生总人数240人,以及所需租车数=人数÷载客量算出载客量最大的车所需辆数即可得租车总数最小值,再结合每辆车至少有一名老师即可租车数量最大值;
(2)设租乙种客车x辆,根据师生总数240人以及总费用2300元即可列出关于x的不等式组,从而得出x范围,之后进一步求出租车方案即可.
【详解】
(1)∵(辆)……15(人),
∴为保证师生都有车坐,汽车总数不能小于6辆;
又∵每辆车上至少有名教师,共有6名教师,
∴租车总数不可大于6,
故答案为:6,6,6;
(2)设租乙种客车x辆,
则:,且,
∴,
∵是整数,
∴,或,
设租车费用为y元,
则,
∴当时,y最小,且,
故租乙种客车2辆,甲种客车4辆时,所需费用最低.
本题主要考查了一元一次不等式组在方案问题中的实际运用,熟练掌握相关概念是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲种客车
乙种客车
载客量/(人/量)
30
租金/(元/辆)
400
280
2024-2025学年山东省德州市九上数学开学检测模拟试题【含答案】: 这是一份2024-2025学年山东省德州市九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省泰兴市实验九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年江苏省泰兴市实验九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省邵阳市双清区数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年湖南省邵阳市双清区数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。