|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年山东省临沂蒙阴县联考数学九上开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年山东省临沂蒙阴县联考数学九上开学检测模拟试题【含答案】01
    2024-2025学年山东省临沂蒙阴县联考数学九上开学检测模拟试题【含答案】02
    2024-2025学年山东省临沂蒙阴县联考数学九上开学检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东省临沂蒙阴县联考数学九上开学检测模拟试题【含答案】

    展开
    这是一份2024-2025学年山东省临沂蒙阴县联考数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小宇同学投擦10次实心球的成绩如表所示:
    由上表可知小宇同学投掷10次实心球成绩的众数与中位数分别是( )
    A.12m,11.9mB.12m,12.1mC.12.1m,11.9mD.12.1m,12m
    2、(4分)如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是( )
    A.130°B.80°C.100°D.50°
    3、(4分)如图,AC、BD是四边形ABCD的对角线,若E、F、G、H分别是BD、BC、AC、AD的中点,顺次连接E、F、G、H四点,得到四边形EFGH,则下列结论不正确的是( )
    A.四边形EFGH一定是平行四边形B.当AB=CD时,四边形EFGH是菱形
    C.当AC⊥BD时,四边形EFGH是矩形D.四边形EFGH可能是正方形
    4、(4分)随机抽取10名八年级同学调查每天使用零花钱的情况,结果如表,则这10名同学每天使用零花钱的中位数是
    A.2元B.3元C.4元D.5元
    5、(4分)某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是( )
    A.B.C.D.
    6、(4分)如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为( )
    A.30°B.35°C.40°D.45°
    7、(4分)观察下列图形,其中既是轴对称又是中心对称图形的是( )
    A.B.C.D.
    8、(4分),图象上有两点,且,,,当时,的取值范围是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)_______.
    10、(4分)如图,在平行四边形ABCD中,连接AC,按以下步骤作图:分别以点A,C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M,N,作直线MN交CD于点E,交AB于点F.若AB=5,BC=3,则△ADE的周长为__________.
    11、(4分)如图,在四边形中,点是对角线的中点,点、分别是、的中点,,且,则______.
    12、(4分)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
    ①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
    其中正确结论的为______(请将所有正确的序号都填上).
    13、(4分)赵爽(约公元182~250年),我国历史上著名的数学家与天文学家,他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之为弦实.开方除之,即弦.”又给出了新的证明方法“赵爽弦图”,巧妙地利用平面解析几何面积法证明了勾股定理.如图所示的“赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如果小正方形的面积为1,直角三角形较长直角边长为4,则大正方形的面积为_____________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知如图:直线AB解析式为,其图像与坐标轴x,y轴分别相交于A、B两点,点P在线段AB上由A向B点以每秒2个单位运动,点C在线段OB上由O向B点以每秒1个单位运动(其中一点先到达终点则都停止运动),过点P与x轴垂直的直线交直线AO于点Q. 设运动的时间为t秒(t≥0).
    (1)直接写出:A、B两点的坐标A( ),B( ).
    ∠BAO=______________度;
    (2)用含t的代数式分别表示:CB= ,PQ= ;
    (3)是否存在t的值,使四边形PBCQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
    (4)(3分)是否存在t的值,使四边形PBCQ为菱形?若存在,求出t的值;若不存在,说明理由,
    并探究如何改变点C的速度(匀速运动),使四边形PBCQ在某一时刻为菱形,求点C的速度和时
    间t.
    15、(8分)解不等式组:,并把它的解集在数轴上表示出来.
    16、(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
    (1)本次接受调查的跳水运动员人数为 ,图①中m的值为 ;
    (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
    17、(10分)(1)计算:
    (2)已知:x=+1,求x2﹣2x的值.
    18、(10分)如图,在中,,,的垂直平分线分别交和于点、.求证:.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知,,,,,……(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,____________.
    20、(4分)外角和与内角和相等的平面多边形是_______________.
    21、(4分)已知,化简________
    22、(4分)已知关于的方程的一个解为1,则它的另一个解是__________.
    23、(4分)据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与x(时)的函数图象.
    (1)求每小时的进水量;
    (2)当8≤x≤12时,求y与x之间的函数关系式;
    (3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.
    25、(10分)如图,在△ABC 中,AB=AC,∠BAC=120°,E 为 BC 上一点,以 CE 为直径作⊙O 恰好经过 A、C 两点, PF⊥BC 交 BC 于点 G,交 AC 于点 F.
    (1)求证:AB 是⊙O 的切线;
    (2)如果 CF =2,CP =3,求⊙O 的直径 EC.
    26、(12分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
    (1)求证:△ADE≌△CBF;
    (2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.
    【详解】
    解:由上表可知小宇同学投掷10次实心球成绩的众数是12.1m,中位数是=12(m),
    故选:D.
    本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    2、A
    【解析】
    根据平行四边形的性质即可解答.
    【详解】
    解:在平行四边形ABCD中,
    ∠A+∠C=100°,
    故∠A=∠C=50°,
    且AD∥BC,
    故∠B=180°-50°=130°.
    故答案选A.
    本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.
    3、C
    【解析】
    根据三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理判断即可.
    【详解】
    解:∵E、F分别是BD、BC的中点,
    ∴EF∥CD,EF=CD,
    ∵H、G分别是AD、AC的中点,
    ∴HG∥CD,HG=CD,
    ∴HG∥EF,HG=EF,
    ∴四边形EFGH是平行四边形,A说法正确,不符合题意;
    ∵F、G分别是BC、AC的中点,
    ∴FG=AB,
    ∵AB=CD,
    ∴FG=EF,
    ∴当AB=CD时,四边形EFGH是菱形,B说法正确,不符合题意;
    当AB⊥BC时,EH⊥EF,
    ∴四边形EFGH是矩形,C说法错误,符合题意;
    当AB=CD,AB⊥BC时,四边形EFGH是正方形,说法正确,不符合题意;
    故选:C.
    此题考查中点四边形、三角形中位线定理,掌握平行四边形、矩形、菱形、正方形的判定定理是解题的关键.
    4、B
    【解析】
    将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    【详解】
    解:共10名同学,中位数是第5和第6的平均数,故中位数为3,
    故选:.
    本题考查了中位数,正确理解中位数的意义是解题的关键.
    5、C
    【解析】
    众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    解:数据1出现了10次,次数最多,所以众数为1,
    一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.
    故选:C.
    本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.
    6、B
    【解析】
    由旋转性质等到△ABD为等腰三角形,利用内角和180°即可解题.
    【详解】
    解:由旋转可知,∠BAD=110°,AB=AD
    ∴∠B=∠ADB,
    ∠B=(180°-110°)2=35°,
    故选B.
    本题考查了等腰三角形的性质,三角形的内角和,属于简单题,熟悉旋转的性质是解题关键.
    7、D
    【解析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
    【详解】
    A. 是中心对称图形,不是轴对称图形,选项不符合题意;
    B. 是轴对称图形,不是中心对称图形,选项不符合题意;
    C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;
    D. 是中心对称图形,也是轴对称图形,选项符合题意,
    故选D.
    本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.
    8、D
    【解析】
    根据一次函数的性质,k<0时,y随x的增大而减小来判断即可.
    【详解】
    解:当k<0时,y随x的增大而减小,
    若x1<x2,得y1>y2,∴<0;
    若x1>x2,得y1<y2,∴<0;
    又,∴y1≠y2,∴≠0.
    ∴t<0.
    故选:D.
    本题主要考查一次函数的性质,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    用配方法解题即可.
    【详解】
    故答案为:1.
    本题主要考查配方法,掌握规律是解题关键.
    10、8
    【解析】
    解:由做法可知MN是AC的垂直平分线,
    ∴AE=CE.
    ∵四边形ABCD是平行四边形
    ∴CD=AB=5,AD=BC=3.
    ∴AD+DE+AE=AD+DE+CE=AD+CD=5+3=8,
    ∴△ADE的周长为8.
    11、45
    【解析】
    根据三角形中位线定理易证△FPE是等腰三角形,然后根据平行线的性质和三角形外角的性质求出∠FPE =90°即可.
    【详解】
    解:∵是的中点,、分别是、的中点,
    ∴EP∥AD,EP=AD,FP∥BC,FP=BC,
    ∵AD=BC,
    ∴EP=FP,
    ∴△FPE是等腰三角形,
    ∵,
    ∴∠PEB+∠ABD+∠DBC=90°,
    ∴∠FPE=∠DPE+∠DPF=∠PEB+∠ABD+∠DBC=90°,
    ∴,
    故答案为:45.
    本题考查了三角形中位线定理,等腰三角形的判定和性质,平行线的性质以及三角形外角的性质,根据三角形中位线定理证得△FPE是等腰三角形是解题关键.
    12、①③④
    【解析】
    根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.
    【详解】
    解:∵△ACE是等边三角形,
    ∴∠EAC=60°,AE=AC,
    ∵∠BAC=30°,
    ∴∠FAE=∠ACB=90°,AB=2BC,
    ∵F为AB的中点,
    ∴AB=2AF,
    ∴BC=AF,
    ∴△ABC≌△EFA,
    ∴FE=AB,
    ∴∠AEF=∠BAC=30°,
    ∴EF⊥AC,故①正确,
    ∵EF⊥AC,∠ACB=90°,
    ∴HF∥BC,
    ∵F是AB的中点,
    ∴HF=BC,
    ∵BC=AB,AB=BD,
    ∴HF=BD,故④说法正确;
    ∵AD=BD,BF=AF,
    ∴∠DFB=90°,∠BDF=30°,
    ∵∠FAE=∠BAC+∠CAE=90°,
    ∴∠DFB=∠EAF,
    ∵EF⊥AC,
    ∴∠AEF=30°,
    ∴∠BDF=∠AEF,
    ∴△DBF≌△EFA(AAS),
    ∴AE=DF,
    ∵FE=AB,
    ∴四边形ADFE为平行四边形,
    ∵AE≠EF,
    ∴四边形ADFE不是菱形;
    故②说法不正确;
    ∴AG=AF,
    ∴AG=AB,
    ∵AD=AB,
    则AD=4AG,故③说法正确,
    故答案为①③④.
    考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.
    13、1
    【解析】
    观察图形可知,小正方形的面积为1,可得出小正方形的边长是1,进而求出直角三角形较短直角边长,再利用勾股定理得出大正方形的边长,进而求出答案.
    【详解】
    解:∵小正方形的面积为1,∴小正方形的边长是1,
    ∵直角三角形较长直角边长为4,∴直角三角形较短直角边长为:4-1=3,
    ∴大正方形的边长为:,
    ∴大正方形的面积为:5²=1,
    故答案为:1.
    本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.
    三、解答题(本大题共5个小题,共48分)
    14、(1),∠BAO=30°;(2);(3)见解析;(4) 当点C的速度变为每秒个单位时,时四边形PBCQ是菱形.
    【解析】
    【分析】(1)设x=0,y=0可分别求出A,B的坐标;(2)纵坐标的差等于线段长度;(3)当PQ=BC时 , 即,是平行四边形;(4)时,,,所以不可能是菱形;若四边形PBCQ构成菱形则,PQ=BC,
    且PQ=PB时成立.
    【详解】解:(1)直接写出:A、B两点的坐标,∠BAO=30°
    (2)用含t的代数式分别表示:;
    (3)∵
    ∴当PQ=BC时 , 即,时,四边形PBCQ是平行四边形.
    (4)∵时,,,
    ∴四边形PBCQ不能构成菱形。
    若四边形PBCQ构成菱形则,PQ=BC,
    且PQ=PB时成立.
    则有时
    BC=BP=PQ= OC=OB-BC=

    ∴当点C的速度变为每秒个单位时,时四边形PBCQ是菱形.
    【点睛】本题考核知识点:一次函数,平行四边形,菱形的判定.此题是综合题,要用数形结合思想进行分析.
    15、,解集在数轴上表示如图见解析.
    【解析】
    先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
    【详解】
    解:由①得:
    由②得:
    不等式组解集为
    解集在数轴上表示如图:
    本题考查了解一元一次不等式组的应用,解此题的关键是能求出不等式组的解集,难度适中.
    16、(1)40人;1;(2)平均数是15;众数16;中位数15.
    【解析】
    (1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
    【详解】
    解:(1)4÷10%=40(人),
    m=100-27.5-25-7.5-10=1;
    故答案为40,1.
    (2)观察条形统计图,
    ∵,
    ∴这组数据的平均数为15;
    ∵在这组数据中,16出现了12次,出现的次数最多,
    ∴这组数据的众数为16;
    ∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
    ∴这组数据的中位数为15.
    本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
    17、(1);(2)1.
    【解析】
    (1)根据二次根式的乘除法和加减法可以解答本题;
    (2)根据x的值和平方差公式可以解答本题.
    【详解】
    (1)


    =2;
    (2)∵x=+1,
    ∴x2﹣2x
    =x(x﹣2)


    =5﹣1
    =1.
    本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
    18、详见解析
    【解析】
    连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE中,由直角三角形的性质可证得BE=2CE,则可证得结论.
    【详解】
    证明:连接,

    为边为垂直平分线,
    .
    ,,


    在中,,

    .
    本题主要考查了含30°角的直角三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-
    【解析】
    根据Sn数的变化找出Sn的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.
    【详解】
    解:S1=,S2=-S1-1=--1=-,S3==-,S4=-S3-1= ,=-(a+1),S6=-S5-1=(a+1)-1=a,S7= ,…,
    ∴Sn的值每6个一循环.
    ∵2018=336×6+2,
    ∴S2018=S2=-.
    故答案为:-.
    此题考查规律型中数字的变化类,根据数值的变化找出Sn的值,每6个一循环是解题的关键.
    20、四边形
    【解析】
    设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
    【详解】
    设此多边形是n边形,由题意得:
    解得
    故答案为:四边形.
    本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
    21、
    【解析】
    根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.
    【详解】
    ∵a<0<b,
    ∴|a−b|=b−a.
    故答案为:.
    本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.
    22、
    【解析】
    根据一元二次方程解的定义,将x=1代入原方程列出关于k的方程,通过解方程求得k值;最后根据根与系数的关系求得方程的另一根.
    【详解】
    解:将x=1代入关于x的方程x2+kx−1=0,
    得:1+k−1=0
    解得:k=2,
    设方程的另一个根为a,
    则1+a=−2,
    解得:a=−1,
    故方程的另一个根为−1.
    故答案是:−1.
    本题考查的是一元二次方程的解集根与系数的关系.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
    23、1.888×
    【解析】
    先用用科学记数法表示为:的形式,然后将保留4位有效数字可得.
    【详解】
    18884600=1.88846×≈1.888×
    故答案为:1.888×
    本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:.
    二、解答题(本大题共3个小题,共30分)
    24、(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y=3x+1;(3).
    【解析】
    (1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;
    (2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;
    (3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻
    【详解】
    解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米
    ∴(25﹣5)÷(8﹣4)=5(立方米/时)
    ∴每小时的进水量为5立方米.
    (2)设函数y=kx+b经过点(8,25),(12,37)
    解得:∴当8≤x≤12时,y=3x+1
    (3)∵8点到12点既进水又出水时,每小时水量上升3立方米
    ∴每小时出水量为:5﹣3=2(立方米)
    当8≤x≤12时,3x+1≥28,解得:x≥9
    当x>14时,37﹣2(x﹣14)≥28,解得:x≤
    ∴当水塔中的贮水量不小于28立方米时,x的取值范围是9≤x≤
    本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.
    25、(1)见解析;(2)⊙O 的直径EC= 1.
    【解析】
    (1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
    (2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.
    【详解】
    证明:(1)连接AO,
    ∵AB=AC,∠BAC=120°,
    ∴∠B=∠ACB=10°,
    ∵AO=CO,
    ∴∠0AC=∠OCA=10°,
    ∴∠BAO=120°-10°=90°,
    ∵OA 是半径
    ∴AB 是⊙O 的切线;
    (2)解:连接OP,
    ∵PF⊥BC,∴∠FGC=∠EGP=90°,
    ∵CF=2,∠FCG=10°,∴FG=1,
    ∴在Rt△FGC 中CG=
    ∵CP=1.∴Rt△GPC 中,PG=
    设OG=x,则OC=x+,连接OP,,显然OP=OC=x+
    在 Rt△OPG 中,由勾股定理知
    即(x+)2=x2+()2∴x .
    ∴⊙O 的直径EC=EG+CG=2x++=1.
    故答案为:(1)见解析;(2)⊙O 的直径EC= 1.
    本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.
    26、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
    【解析】
    (1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
    (2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AB=CD,∠A=∠C,
    ∵E、F分别为边AB、CD的中点,
    ∴AE=AB,CF=CD,
    ∴AE=CF,
    在△ADE和△CBF中,

    ∴△ADE≌△CBF(SAS);
    (2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
    解:由(1)可得BE=DF,
    又∵AB∥CD,
    ∴BE∥DF,BE=DF,
    ∴四边形BEDF是平行四边形,
    连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
    ∴DF∥AE,DF=AE,
    ∴四边形AEFD是平行四边形,
    ∴EF∥AD,
    ∵∠ADB是直角,
    ∴AD⊥BD,
    ∴EF⊥BD,
    又∵四边形BFDE是平行四边形,
    ∴四边形BFDE是菱形.
    1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
    题号





    总分
    得分
    成绩(m)
    11.8
    11.9
    12
    12.1
    12.2
    频数
    2
    2
    2
    3
    1
    每天使用零花钱情况
    单位(元
    2
    3
    4
    5
    人数
    1
    5
    2
    2
    尺码数
    人数
    相关试卷

    2024-2025学年山东省临沂市沂水区九上数学开学预测试题【含答案】: 这是一份2024-2025学年山东省临沂市沂水区九上数学开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省临朐县数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年山东省临朐县数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省济宁梁山县联考数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年山东省济宁梁山县联考数学九上开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map