![2024-2025学年山东省青岛胶州市、黄岛区、平度区、李沧区数学九年级第一学期开学联考模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16191082/0-1727257906063/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年山东省青岛胶州市、黄岛区、平度区、李沧区数学九年级第一学期开学联考模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16191082/0-1727257906128/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年山东省青岛胶州市、黄岛区、平度区、李沧区数学九年级第一学期开学联考模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16191082/0-1727257906146/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年山东省青岛胶州市、黄岛区、平度区、李沧区数学九年级第一学期开学联考模拟试题【含答案】
展开这是一份2024-2025学年山东省青岛胶州市、黄岛区、平度区、李沧区数学九年级第一学期开学联考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四边形EFGH的周长等于2AB.其中正确的个数是( )
A.1B.2C.3D.4
2、(4分)下列四边形中是轴对称图形的个数是( )
A.4个B.3个C.2个D.1个
3、(4分)如图,四边形是矩形,,,点在第二象限,则点的坐标是
A.B.C.D.
4、(4分)已知关于的一元二次方程没有实数根,则实数的取值范围是( )
A.B.C.D.
5、(4分)下列事件是确定事件的是( )
A.射击运动员只射击1次,就命中靶心
B.打开电视,正在播放新闻
C.任意一个三角形,它的内角和等于180°
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6
6、(4分)为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:
则关于这些同学的每天锻炼时间,下列说法错误的是( )
A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50
7、(4分)有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( )
A.B.C.D.
8、(4分)如图,正方形纸片ABCD的边长为4 cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
\
A.2 cmB.4 cmC. cmD.1 cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在直角坐标系中,直线与轴交于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,…,则等边的边长是______.
10、(4分)一次函数的图象如图所示,当时,的取值范围是_______.
11、(4分)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 .
12、(4分)如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.
13、(4分)农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF、DE.
(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)
(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.
(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.
15、(8分)某产品成本为400元/件,由经验得知销售量与售价是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润最大?最大利润是多少?
16、(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.
(1)求一次函数的解析式;
(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;
(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.
17、(10分)已知:中,AB=AC,点 D、E 分别是线段 CB、AC 延长线上的点,满足 ADE ABC .
(1)求证: AC CE BD DC ;
(2)若点 D 在线段 AC 的垂直平分线上,求证:
18、(10分)已知点分别在菱形的边上滑动(点不与重合),且.
(1)如图1,若,求证:;
(2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;
(3)如图3,若,请直接写出四边形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形ABCD中,O是两对角线交点,于点E,若
20、(4分)据统计,2019年全国高考报名人数达10310000人,比去年增加了560000,其中数据10310000用科学计数法表示为_________
21、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.
22、(4分)已知等边三角形的边长是2,则这个三角形的面积是_____.(保留准确值)
23、(4分)如图,菱形的边长为2,点,分别是边,上的两个动点,且满足,设的面积为,则的取值范围是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)我市某火龙果基地销售火龙果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克6.8元,由基地免费送货;方案B:每千克6元,客户需支付运费2000元 .
(1)请分别写出按方案A,方案B购买这种火龙果的应付款y(元)与购买数量x(kg)之间的函数表达式;
(2)求购买量在什么范围时,选择方案A比方案B付款少?
(3)某水果批发商计划用30000元,选用这两种方案中的一种,购买尽可能多的这种火龙果,他应选择哪种方案?
25、(10分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.
(1)求证:;
(2)求证:;
(3)当时,求的长.
26、(12分)如图1,□ABCD在平面直角坐标系xOy中,已知点、、、,点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.
(1)求点D的坐标和的值;
(2)如图2,当直线EF交x轴于点,且时,求点P的坐标;
(3)如图3,当直线EF交x轴于点时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.
图1 图2 图3
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.
【详解】
∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF=CD,FG=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,故②错误,
∴EG⊥FH,HF平分∠EHG;故①③正确,
∴四边形EFGH的周长= EF=FG=GH=HE =2AB,故⑤正确,
没有条件可证明EG=BC,故④错误,
∴正确的结论有:①③⑤,共3个,
故选C.
本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.
2、B
【解析】
根据轴对称图形的概念逐一进行判断即可.
【详解】
平行四边形不是轴对称图形,故不符合题意;
矩形是轴对称图形,故符合题意;
菱形是轴对称图形,故符合题意;
正方形是轴对称图形,故符合题意,
所以是轴对称图形的个数是3个,
故选B.
本题考查了轴对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.
3、D
【解析】
过C作CE⊥y轴于E,过A作AF⊥y轴于F,得到∠CEO=∠AFB=90°,根据矩形的性质得到AB=OC,AB∥OC,根据全等三角形的性质得到CE=AF,OE=BF,BE=OF,于是得到结论.
【详解】
解:过作轴于,过作轴于,
,
四边形是矩形,
,,
,
,
同理,
,,,
,,
,,,
,
点的坐标是;
故选:.
本题考查了矩形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.
4、A
【解析】
根据判别式的意义得到△=(-2)2-4m<0,然后解关于m的不等式即可.
【详解】
根据题意得△=(-2)2-4m<0,
解得m>1.
故选A.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
5、C
【解析】
利用随机事件以及确定事件的定义分析得出答案.
【详解】
A.射击运动员只射击1次,就命中靶心,是随机事件. 故选项错误;
B.打开电视,正在播放新闻,是随机事件.故选项错误;
C.任意一个三角形,它的内角和等于180°,是必然事件.故选项正确;
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件.故选项错误.
故选C.
本题考查了随机事件和确定事件,正确把握相关事件的确定方法是解题的关键.
6、B
【解析】
根据众数、中位数和平均数的定义分别对每一项进行分析即可.
【详解】
解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;
B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;
C、调查的户数是2+3+4+1=10,故C选项说法正确;
D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;
故选:B.
此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
7、C
【解析】
数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.
【详解】
解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个
数与总数的比值即.
故选C.
本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
8、A
【解析】
如图,取AB,CD的中点K,G,连接KG,BD交于点O,由题意知,点Q运动的路线是线段OG,因为DO=OB,所以DG=GC,所以OG=BC=×4=2,所以点Q移动路线的最大值是2,故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先从特殊得到一般探究规律后,利用规律解决问题即可;
【详解】
∵直线l:y=x-与x轴交于点B1
∴B1(1,0),OB1=1,△OA1B1的边长为1;
∵直线y=x-与x轴的夹角为30°,∠A1B1O=60°,
∴∠A1B1B2=90°,
∵∠A1B2B1=30°,
∴A1B2=2A1B1=2,△A2B3A3的边长是2,
同法可得:A2B3=4,△A2B3A3的边长是22;
由此可得,△AnBn+1An+1的边长是2n,
∴△A2018B2019A2019的边长是1.
故答案为1.
考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.
10、
【解析】
根据函数图象与轴的交点坐标,观察图象在x轴上方的部分即可得.
【详解】
当y≥0时,观察图象就是直线y=kx+b在x轴上方的部分对应的x的范围(包含与x轴的交点),
∴x≤2,
故答案为:x≤2.
本题考查了一次函数与一元一次不等式的关系,合理运用数形结合思想是解题的关键.
11、.
【解析】
试题分析:画树状图为:
共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以则两辆汽车都直行的概率为,故答案为.
考点:列表法与树状图法.
12、
【解析】
根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.
【详解】
设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,
而EC=BC=4,在Rt△ECN中,由勾股定理可知,即
整理得16x=48,所以x=1.
故答案为:1.
本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.
13、乙
【解析】因为S甲2≈0.01>S乙2≈0.002,方差小的为乙,所以本题中比较稳定的是乙.
三、解答题(本大题共5个小题,共48分)
14、(1)DE=EF,见解析;(2)∠BAD=60°;(3)S四边形ABCD=6.
【解析】
(1)利用直角三角形斜边的中线性质和三角形的中位线性质可得结论;
(2)先证明∠CEF=∠BAD,∠DEC=∠BAD,根据∠DEF=90°列方程得∠BAD的度数;
(3)由四边形CDEF是菱形,说明△CDE是等边三角形,再根据等底同高说明△CDE与△DEA间关系,根据相似说明△CAB与△CEF间关系,由DE=2得AB=4,得等边△DEC的面积,利用三角形的面积间关系得结论.
【详解】
(1)DE=EF,
在△ABC中,点E,F分别为AC,BC的中点,
∴EF∥AB,且EF=AB,
在Rt△ACD中,点E为AC的中点,
∴DE=AC,
∵AB=AC,
∴DE=EF;
(2)∵AC平分∠BAD,EF∥AB,
DE=AC=AE=EC,
∴∠BAC=∠DAC,∠CEF=∠BAC,∠DEC=2∠DAC=∠BAD,
∵∠DEF=90°,
∴∠CEF+∠DEC=∠BAC+2∠DAC=90°,
∴∠BAC=∠DAC=30°,
∴∠BAD=60°;
(3)四边形ABCD的面积为:
∵四边形CDEF是菱形,EC=DE,
∴△CDE与△CEF都是等边三角形,
∵EF=DE=CD=CF=2,
∴AB=4,
∴S△DCE=S△DEA=S△CEF;
∵EF∥AB,
∴,
∴S△ABC=4S△CEF=4
∴S四边形ABCD=S△DCE+S△DEA+S△ABC=2×+4=6.
本题考查了四边形的综合问题,解题的关键是掌握三角形的中位线定理、直角三角形斜边的中线的性质、菱形的性质及等边三角形的面积等知识.题目难度中等,由题目原型到探究再到结论,步步深入,符合认知规律.
15、售价为850元/件时,有最大利润405000元
【解析】
设销售量与售价的一次函数为,然后再列出利润的二次函数,求最值即可完成解答.
【详解】
设一次函数为,
把、代入得
.
解方程组得,,
∴,
∴
∴时,,
∴售价为850元/件时,有最大利润405000元.
本题考查一次函数和二次函数综合应用,其中确定一次函数解析式是解答本题的关键.
16、(1)y=-x+3;(2)不在,理由见解析;(3)3
【解析】
(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;
(2)把C的坐标代入一次函数的解析式进行检验即可;
(3)首先求得D的坐标,然后利用三角形的面积公式求解.
解:(1)在y=2x中,令x=1,得y=2,则点B的坐标是(1,2),
设一次函数的解析式是y=kx+b(k≠0),
则 ,解得
故一次函数的解析式是y=-x+3.
(2)点C(4,-2)不在该一次函数的图象上.
理由:对于y=-x+3,当x=4时,y=-1≠-2,
所以点C(4,-2)不在该函数的图象上.
(3)在y=-x+3中,令y=0,得x=3,则点D的坐标是(3,0),
则S△BOD=×OD×2=×3×2=3.
点睛:本题主要考查了用待定系数法求函数的解析式,解题的重点在于要先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.
17、见解析
【解析】
证明,根据相似三角形的性质即可证明.
证明,根据相似三角形的性质即可证明.
【详解】
中,AB=AC,
点D在线段AC的垂直平分线上,
考查相似三角形的判定与性质以及线段的垂直平分线的性质,掌握相似三角形的判定与性质是解题的关键.
18、(1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为.
【解析】
(1)根据菱形的性质及已知,得到,再证,
根据三角形全等的性质即可得到结论;
(2)作,垂足分别为点,证明,根据三角形全等的性质即可得到结论;
(3)根据菱形的面积公式,结合(2)的结论解答.
【详解】
解:(1)∵四边形是菱形,
∴,.
∵,∴,
∴.
∵,∴,∴.
在和中,,
∴,
∴.
(2)若与不垂直,(1)中的结论还成立证明如下:
如图,作,垂足分别为点.
由(1)可得,
∴,
在和中,,
∴,∴.
(3)如图,连接交于点.
∵,∴为等边三角形,
∵,∴,同理,,
∴四边形的面积四边形的面积,
由(2)得四边形的面积四边形AECF的面积
∵,
∴,,
∴四边形的面积为,
∴四边形的面积为.
本题主要考查全等三角形的性质和判定,菱形的性质的应用.主要考查学生的推理能力,证明三角形全等是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
先根据矩形的性质得到AO=OD,再根据特殊角的三角函数值得到∠OAE=30°,进而求得OE的长,然后即可得解.
【详解】
∵四边形ABCD为矩形,
∴OA=OD,
在Rt△AOE中,
∵,
∴sin∠OAE=,
∴∠OAE=30°,
则OE=AE·tan∠OAE=×=1,
OA===2,
故DE=OE+OD=OE+OA=3.
故答案为3.
本题主要考查解直角三角形,特殊角的三角函数,矩形的性质,熟练掌握其知识点是解此题的关键.
20、1.031×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将10310000科学记数法表示为:1.031×1.
故答案为:1.031×1.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
21、(22008-1,22008)
【解析】
先求出A1、A2、A3的坐标,找出规律,即可求解.
【详解】
∵直线y=x+1和y轴交于A1,
∴A1的交点为(0,1)
∵四边形A1B1C1O是正方形,
∴OC1=OA1=1,
把x=1代入直线得y=2,
∴A2(1,2)
同理A3(3,4)
…
∴An的坐标为(2n-1-1,2n-1)
故A2019的坐标为(22008-1,22008)
此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.
22、
【解析】
解:如图,过点A作AD⊥BC于点D,
∵等边三角形的边长是2,
∴BD=BC=×2=1,
在Rt△ABD中,AD= =
所以,三角形的面积=×2×=
故答案为:.
本题考查等边三角形的性质,比较简单,作出图形求出等边三角形的高线的长度是解题的关键.
23、.
【解析】
先证明为正三角形,根据直角三角形的特点和三角函数进行计算即可解答
【详解】
菱形的边长为2,,
和都为正三角形,
,,
,而,
,
;
,,
,
即,
为正三角形;
设,
则,
当时,最小,
,
当与重合时,最大,
,
.
故答案为.
此题考查等边三角形的判定与性质和菱形的性质,解题关键在于证明为正三角形
二、解答题(本大题共3个小题,共30分)
24、(1)方案A:yA=6.8x;方案B:yB=6x+1;(2)1≤x<2;(3)选择方案B
【解析】
(1)根据题意确定出两种方案应付款y与购买量x之间的函数表达式即可;
(2)根据A付款比B付款少列出不等式,求出不等式的解集确定出x的范围即可;
(3)根据题意列出算式,计算比较即可得到结果.
【详解】
解:(1)由题意,得方案A的函数表达式为yA=6.8x,
方案B的函数表达式为yB=6x+1.
(2)当yA<yB时,6.8x<6x+1.解得x<2.
故购买量x的范围满足1≤x<2时,
选择方案A比选择方案B付费少.
(3)当y=30000时,方案A:6.8x=30 000,
解得x≈4412(kg)
方案B:6x+1=30000,解得x≈4667 (kg),
∵4412<4667
∴要购买尽可能多的火龙果,应该选择方案B.
本题考查了一次函数的应用,弄清题中的两种方案是解本题的关键.
25、(1)证明见解析;(2)证明见解析;(3)PH=.
【解析】
(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先过B作BQ⊥PH,垂足为Q,易证得△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH.
(3)首先设AE=x,则EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的长,易证得△DPH∽△AEP,然后由相似三角形的对应边成比例,求得答案.
【详解】
(1)证明:∵PE=BE,
∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.
又∵四边形ABCD为正方形
∴AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:过B作BQ⊥PH,垂足为Q,
由(1)知,∠APB=∠BPH,
在△ABP与△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,
∴△BCH和△BQH是直角三角形,
在Rt△BCH与Rt△BQH中,
,
∴Rt△BCH≌Rt△BQH(HL),
∴CH=QH,
∴AP+HC=PH.
(3)解:∵AP=2,
∴PD=AD-AP=8-2=6,
设AE=x,则EP=8-x,
在Rt△AEP中,AE2+AP2=PE2,
即x2+22=(8-x)2,
解得:x=,
∵∠A=∠D=∠ABC=90°,
∴∠AEP+∠APE=90°,
由折叠的性质可得:∠EPG=∠ABC=90°,
∴∠APE+∠DPH=90°,
∴∠AEP=∠DPH,
∴△DPH∽△AEP,
∴,
∴,
解得:DH=.
∴PH=
此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握折叠前后图形的对应关系、注意掌握方程思想的应用,注意准确作出辅助线是解此题的关键.
26、(1)(2,−2),7;(2)点P的坐标为(,−)或(−,);(3)点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
【解析】
(1)根据平行线的性质可求点D的坐标,根据重心的定义可得S四边形BEFC=S▱ABCD从而求解;
(2)分两种情况:①点P在AC左边,②点P在AC右边,进行讨论即可求解;
(3)先作出图形,再根据矩形的性质即可求解.
【详解】
解:(1)∵▱ABCD在平面直角坐标系xOy中,点A(−1,0)、B(0,4)、C(3,2),
∴点D的坐标为(2,−2),
∴S▱ABCD=6×4−×1×4−×3×2−×1×4−×3×2=14,
∵点G是对角线AC的中点,
∴S四边形BEFC=S▱ABCD=7;
(2)∵点G是对角线AC的中点,
∴G(1,1),
设直线GH的解析式为y=kx+b,
则,
解得,
∴直线GH的解析式为y=−x+;
①点P在AC右边,
S△ACH=×6×2=6,
∵S△PAC=S四边形BEFC,
1+4×=,
当x=时,y=−×+=−,
∴P(,−);
②点P在AC左边,
由中点坐标公式可得P(−,);
综上所述,点P的坐标为(,−)或(−,);
(3)如图,
设直线GK的解析式为y=kx+b,则,
解得,
则直线GK的解析式为y=−x+,
CP⊥AP时,点P的坐标为(3,0)或(−1,2);
CP⊥AC时,直线AC的解析式为y=x+,
直线CP的解析式为y=−2x+8,
故点P的坐标为(,−);
AP⊥AC时,
同理可得点P的坐标为(−,);
综上所述,点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
本题考查四边形的综合题、矩形的性质、三角形和四边形的面积等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用方程的思想思考问题,属于中考压轴题.
题号
一
二
三
四
五
总分
得分
批阅人
每天锻炼时间(分钟)
20
40
60
90
学生数
2
3
4
1
相关试卷
这是一份2023-2024学年山东省青岛胶州市、黄岛区、平度区、李沧区九上数学期末调研试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为等内容,欢迎下载使用。
这是一份2023-2024学年山东省青岛胶州市、黄岛区、平度区、李沧区数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份2023-2024学年山东省青岛胶州市、黄岛区、平度区、李沧区数学八上期末学业水平测试试题含答案,共6页。试卷主要包含了答题时请按要求用笔,用三角尺可按下面方法画角平分线,若函数是正比例函数,则的值是,4的平方根是,下列各式中正确的是等内容,欢迎下载使用。