2024-2025学年山东省日照市莒县九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )
A.4B.6C.8D.10
2、(4分)某市为了鼓励节约用水,按以下规定收水费:每户每月用水量不超过,则每立方米水费为元,每户用水量超过,则超过的部分每立方米水费2元,设某户一个月所交水费为元,用水量为,则y与x的函数关系用图象表示为
A.B.
C.D.
3、(4分)下列二次拫式中,最简二次根式是( )
A.B.C.D.
4、(4分)下列函数中,自变量x的取值范围是x≥3的是( )
A.B.C.D.
5、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是( )
A.2.5B.2C.D.4
6、(4分)下列各式中,正确的是( )
A.B.C.D.
7、(4分)如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠AEB等于( )
A.18°B.36°C.72°D.108°
8、(4分)如图,在平面直角坐标系中,点A1,A2,A3在直线y=x+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直角三角形的两边长分别为3和5,则第三条边长是________.
10、(4分)写出一个经过点,且y随x的增大而减小的一次函数的关系式:______.
11、(4分)某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x,根据题意可列方程为_____.
12、(4分)一组数据3、4、5、5、6、7的方差是 .
13、(4分)斜边长17cm,一条直角边长15cm的直角三角形的面积 .
三、解答题(本大题共5个小题,共48分)
14、(12分)在矩形ABCD中,对角线AC、BD交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°.
(1)求证:△AOB是等边三角形;
(2)求∠BOE的度数.
15、(8分)甲、乙两组数据单位:如下表:
(1)根据以上数据填写下表;
(2)根据以上数据可以判断哪一组数据比较稳定.
16、(8分)某学校数学兴趣小组在探究一次函数性质时得到下面正确结论:对于两个一次函数y=k1x+b1和y=k2x+b2,若两个一次函数的图象平行,则k1=k2且b1≠b2;若两个一次函数的图象垂直,则k1•k2=﹣1.请你直接利用以上知识解答下面问题:如图,在平面直角坐标系中,已知点A(0,8),B(6,0),P(6,4).
(1)把直线AB向右平移使它经过点P,如果平移后的直线交y轴于点A′,交x轴于点B′,求直线A′B′的解析式;
(2)过点P作直线PD⊥AB,垂足为点D,按要求画出直线PD并求出点D的坐标;
17、(10分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)
18、(10分)小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).
(1)画出平面直角坐标系;
(2)求出其他各景点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为_____.
20、(4分)化简:()-()=______.
21、(4分)设a是的小数部分,则根式可以用表示为______.
22、(4分)若一次函数的图象不经过第一象限,则的取值范围为_______.
23、(4分)如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读理解
在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.
解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.
解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.
方法迁移:请解答下面的问题:
在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.
25、(10分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,求这个电视塔的高度AB.(参考数据).
26、(12分)如图,是边长为的等边三角形.
(1)求边上的高与之间的函数关系式。是的一次函数吗?如果是一次函数,请指出相应的与的值.
(2)当时,求的值.
(3)求的面积与之间的函数关系式.是的一次函数吗?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=4,OA=OC,OB=OD,
∴OD=OC=AC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=1.
故选C.
2、C
【解析】
水费y和用水量x是两个分段的一次函数关系式,并且y随x的增大而增大,图象不会与x轴平行,可排除A、B、D.
【详解】
因为水费y是随用水量x的增加而增加,而且超过后,增加幅度更大.
故选C.
本题考查一次函数图象问题注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
3、A
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;
B、被开方数含能开得尽方的因数或因式,故B不符合题意;
C、被开方数含分母,故C不符合题意;
D、被开方数含能开得尽方的因数或因式,故D不符合题意;
故选:A.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
4、D
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使各函数在实数范围内有意义,必须:
A、分式有意义,x﹣1≠0,解得:x≠1;B、二次根式和分式有意义,x﹣1>0,解得x>1;
C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣1≥0,解得x≥1.故选D.
5、B
【解析】
连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半可求解.
【详解】
如图,连接AC、CF,
在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,
∠ACD=∠GCF=45°,
所以,∠ACF=45°+45°=90°,
所以,△ACF是直角三角形,
由勾股定理得,AF==4,
∵H是AF的中点,
∴CH=AF=×4=2.
故选:B.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,难点在于作辅助线构造出直角三角形.
6、B
【解析】
,要注意 的双重非负性:.
【详解】
;;;,故选B.
本题考查平方根的计算,重点是掌握平方根的双重非负性.
7、B
【解析】
首先根据平行四边形的性质,得出∠ABC的度数,又由BE平分∠ABC,得出∠ABE=∠CBE,∠AEB和∠CBE是内错角,相等,即可得出∠AEB.
【详解】
解:∵□ABCD中,∠C=108°,
∴∠ABC=180°-108°=72°
又∵BE平分∠ABC,
∴∠ABE=∠CBE=36°
又∵∠AEB=∠CBE
∴∠AEB=36°
故答案为B.
此题主要考查利用平行四边形的性质求角的度数,熟练掌握即可解题.
8、D
【解析】
设点A2,A3,A4坐标,根据等腰直角三角形的性质、结合函数解析式,即可求解.
【详解】
解:∵A1(1,1)在直线y=x+b上,
∴b=,
∴y=x+.
设A2(x2,y2),A3(x3,y3),
则有 y2=x2+,y3=x3+.
又∵△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
将点坐标依次代入直线解析式得到:
y2=y1+1
y3=y1+y2+1= y2
又∵y1=1
∴y2=,
y3=()2=,
∴点A3的纵坐标是,
故选:D.
此题主要考查了一次函数点坐标特点,以及等腰直角三角形斜边上高等于斜边长一半.解题的关键是找出点与直线之间的关系,进而求出点的坐标.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4或
【解析】
由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.
【详解】
∵直角三角形的两边长分别为3和5,
∴①当5是此直角三角形的斜边时,设另一直角边为x,则x==4;
②当5是此直角三角形的直角边时,设另一直角边为x,则x==,
综上所述,第三边的长为4或,
故答案为:4或.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.注意分类讨论思想的运用.
10、y=-x-1
【解析】
可设,由增减性可取,再把点的坐标代入可求得答案.
【详解】
设一次函数解析式为,
随的增大而减小,
,故可取,
解析式为,
函数图象过点,
,解得,
.
故答案为:(注:答案不唯一,只需满足,且经过的一次函数即可).
本题有要考查一次函数的性质,掌握“在中,当时随的增大而增大,当时随的增大而减小”是解题的关键.
11、
【解析】
可先表示出第一次降价后的价格,那么第一次降价后的价格×(1-降低的百分率)=1,把相应数值代入即可求解.
【详解】
解:第一次降价后的价格为75×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为:
75×(1-x)×(1-x),
则列出的方程是75(1-x)2=1.
故答案为75(1-x)2=1.
此题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
12、
【解析】
首先求出平均数,然后根据方差的计算法则求出方差.
【详解】
解: 平均数 =(3+4+5+5+6+7)÷6=5
数据的方差 S2=[(3-5)2+(4-5)2+(5-5)2+(5-5)2+(6-5)2+(7-5)2]=
故答案为 .
13、60cm2
【解析】
试题分析:先根据勾股定理求得另一条直角边的长,再根据直角三角形的面积公式即可求得结果.
由题意得,另一条直角边的长
则直角三角形的面积
考点:本题考查的是勾股定理,直角三角形的面积公式
点评:本题属于基础应用题,只需学生熟练掌握勾股定理和直角三角形的面积公式,即可完成.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)∠BOE=75°.
【解析】
(1)由矩形ABCD,得到OA=OB,根据AE平分∠BAD,∠CAE=15°,即可证明△AOB是等边三角形;
(2)由等边三角形的性质,推出AB=OB,求出∠OBC的度数,根据等边三角形和等腰直角三角形的性质得到OB=BE,然后可求出∠BOE.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴OA=OB,
∵AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∵∠CAE=15°,
∴∠BAC=60°,
∴△AOB是等边三角形.
(2)∵△AOB是等边三角形,
∴AB=OB,∠ABO=60°,
∴∠OBC=90°﹣60°=30°,
∵∠BAE=∠BEA=45°
∵AB=OB=BE,
∴∠BOE=∠BEO=(180°﹣30°)=75°.
本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,角平分线的性质,等腰三角形的判定等知识点.
15、(1)答案见解析;(2)甲组数据较稳定
【解析】
(1)根据图表按照平均数,众数,中位数的定义一一找出来填表即可.
(2)此问先比较平均数,如果平均数相同再比较方差.
【详解】
(1)
(2)∵甲、乙两组数据的平均数相同,且<,∴甲组数据较稳定.
此题考查数据的收集和处理,包含内容有众数,中位数,平均数及方差.
16、(1),(2)
【解析】
(1)已知A、B两点的坐标,可用待定系数法求出直线AB的解析式,根据若两个一次函数的图象平行,则且,设出直线A′B′的解析式,代入P(6,4),即可求得解析式;
(2)根据直线AB的解析式设出设直线PD解析式为代入P(6,4),即可求得解析式,然后联立解方程即可求得D的坐标.
【详解】
解:(1)设直线AB的解析式为y=kx+b
根据题意,得:
解之,得
∴直线AB的解析式为
∵AB∥A′B′,
∴直线A′B′的解析式为,
∵过经过点P(6,4),
∴4=×6+b′,
解得b′=2,
∴直线A′B′的解析式为y=-x+2.
(2)过点P作直线PD⊥AB,垂足为点D,画出图象如图:
∵直线PD⊥AB,
∴设直线PD解析式为y=x+n,
∵过点P(6,4),
∴4=×6+n,解得n=-,
∴直线PD解析式为y=x,
解
得,
∴D(,).
本题考查 了两条直线的平行或相交问题,一次函数的性质,掌握对于两个一次函数y=k1x+b1和y=k2x+b2,若两个一次函数的图象平行,则k1=k2且b1≠b2;若两个一次函数的图象垂直,则k1•k2=-1是解题的关键.
17、见解析
【解析】
分析:题设作为已知条件,结论作为求证,画出图形,写出已知,求证,然后证明即可.
详解:
已知:如图,在四边形ABCD中,AB=CD,AD=BC.
求证:四边形ABCD是平行四边形.
证明:连结AC
在ΔABC和ΔCDA中.
∵AB=CD,BC=DA,AC=CA,
∴ ΔABC≌ΔCDA,
∴ ∠BAC=∠DCA,∠ACB=∠CAD,
∴ AB//CD,AD//BC,
∴四边形ABCD是平行四边形.
点睛:本题考查了平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握命题的证明方法,学会写已知求证,属于中考常考题型.
18、A(0,4),B(﹣3,2),C(﹣2,﹣1),E(3,3),F(0,0).
【解析】
(1)已知游乐园的坐标为(2,-2),将该点向左平移两个单位、再向上平移两个单位,即可得到原点(0,0)的位置;
接下来,以(0,0)为坐标原点,以水平向右的方向为x轴正半轴,以竖直向上的方向为y轴正方向建立平面直角坐标系即可;
(2)根据(1)中的坐标系和其他各景点的位置即可确定它们的坐标.
【详解】
(1)由题意可得,
建立的平面直角坐标系如图所示.
(2)由平面直角坐标系可知,
音乐台A的坐标为(0,4),湖心亭B的坐标为(-3,2),望春亭C的坐标为(-2,-1),游乐园D的坐标为(2,-2),牡丹园E的坐标为(3,3).
本题考查坐标确定位置.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
试题解析:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,
∴CD2=AD•BD=8×2,
则CD=1.
20、.
【解析】
由去括号的法则可得:=,然后由加法的交换律与结合律可得:,继而求得答案.
解:====.
故答案为.
21、
【解析】
根据题意用表示出a,代入原式化简计算即可得到结果.
【详解】
解:根据题意得:a=,
则原式=
=
=
=
=,
故答案为:.
此题考查了估算无理数的大小,根据题意表示出a是解本题的关键.
22、k≤-2.
【解析】
根据一次函数与系数的关系得到,然后解不等式组即可.
【详解】
∵一次函数y=kx+k+2的图象不经过第一象限,
∴
∴k≤-2.
故答案为:k≤-2.
本题考查了一次函数与系数的关系:对于一次函数y=kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.
23、x <-2
【解析】
【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.
【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.
所以,的解集为x<-2.
故答案为x<-2
【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.
二、解答题(本大题共3个小题,共30分)
24、S△ABC=.
【解析】
方法迁移:根据题意画出图形,△ABC的面积等于矩形EFCH的面积減去三个小直角三角形的面积;思维拓展:根据题意画出图形,△ABC的面积等于大矩形的面积减去三个小直角三角形的面积
【详解】
建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图所示,
借用网格面积可得S△ABC=S矩形EFCH﹣S△ABE﹣S△AFC﹣S△CBH=9﹣ ×2×1﹣×3×1﹣×2×3=
此题考查勾股定理,解题关键在于利用勾股定理算出各个边长
25、87.6米
【解析】
根据题意并结合图象运用解直角三角形中的勾股定理进行分析求解即可.
【详解】
解:由题意结合图象,
∵,
∴,
∵米,
∴CE=AE=100米,米,
∴AG (米),
∵米,
∴AB86.6+1=87.6(米).
本题考查解直角三角形的应用,解题的关键是根据仰角构造直角三角形,利用三角函数求解.
26、(1),是的一次函数,,b=0;(2)x=2;(3),不是的一次函数.
【解析】
(1)根据勾股定理计算h的长,可得结论;
(2)直接将h的值代入可得结论;
(3)根据三角形面积公式计算可得结论.
【详解】
解:(1)因为边上的高也是边上的中线,所以,.在中,由勾股定理得,
即,
所以是的一次函数,且,b=0;
(2)h=时,;x=2;
(3)因为,所以不是的一次函数.
本题主要考查了等边三角形的性质,三角形的面积,一次函数的性质,能灵活应用这些性质是解题的关键.
题号
一
二
三
四
五
总分
得分
甲
11
9
6
9
14
7
7
7
10
10
乙
3
4
5
8
12
8
8
13
13
16
平均数
众数
中位数
方差
甲
9
乙
9
2024-2025学年山东省青岛超银中学九上数学开学统考试题【含答案】: 这是一份2024-2025学年山东省青岛超银中学九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省东营市部分学校九上数学开学统考试题【含答案】: 这是一份2024-2025学年山东省东营市部分学校九上数学开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省滨州市部分学校数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年山东省滨州市部分学校数学九上开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。