![2024-2025学年山东省潍坊奎文区五校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】01](http://www.enxinlong.com/img-preview/2/3/16191111/0-1727258068102/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年山东省潍坊奎文区五校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】02](http://www.enxinlong.com/img-preview/2/3/16191111/0-1727258068165/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年山东省潍坊奎文区五校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】03](http://www.enxinlong.com/img-preview/2/3/16191111/0-1727258068198/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年山东省潍坊奎文区五校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法正确的是( ).
A.掷一颗骰子,点数一定小于等于6;
B.抛一枚硬币,反面一定朝上;
C.为了解一种灯泡的使用寿命,宜采用普查的方法;
D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.
2、(4分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=12km,BC=16km,则M,C两点之间的距离为( )
A.13kmB.12kmC.11kmD.10km
3、(4分)下列分解因式正确的是( )
A.x2-x+2=x(x-1)+2B.x2-x=x(x-1)C.x-1=x(1-)D.(x-1)2=x2-2x+1
4、(4分)如果小磊将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为( )
A.B.C.D.
5、(4分)用反证法证明命题:“四边形中至少有一个角是钝角或直角”时,首先应该假设这个四边形中( )
A.有一个角是钝角或直角B.每一个角都是钝角
C.每一个角都是直角D.每一个角都是锐角
6、(4分)下列四个数中,大于而又小于的无理数是
A.B.C.D.
7、(4分)若方程组的解为,则直线y=mx+n与y=﹣ex+f的交点坐标为( )
A.(﹣4,6)B.(4,6)C.(4,﹣6)D.(﹣4,﹣6)
8、(4分)下列计算正确的是( )
A.B.2C.()2=2D.=3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
10、(4分)如图,在平面直角坐标系中,点,过点作的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交轴于点……按此规律继续作下去,直至得到点为止,则点的坐标为_________.
11、(4分)已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.
12、(4分)一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.
13、(4分)如图,线段AC、BD交于点O,请你添加一个条件:________,使△AOB∽△COD.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,□ABCD在平面直角坐标系xOy中,已知点、、、,点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.
(1)求点D的坐标和的值;
(2)如图2,当直线EF交x轴于点,且时,求点P的坐标;
(3)如图3,当直线EF交x轴于点时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.
图1 图2 图3
15、(8分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,求这个电视塔的高度AB.(参考数据).
16、(8分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
17、(10分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下
如图(1)∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
S四边形ADCB=
S四边形ADCB=
∴化简得:a2+b2=c2
请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
18、(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是AB的中点.已知AC=8cm,BD=6cm,求OE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图的方式放置,A1、A2、A3…和点C1、C2、C3…分别在直线y=x+2和x轴上,则点∁n的横坐标是_____.(用含n的代数式表示)
20、(4分)如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.
21、(4分)已知一次函数y=﹣2x+4,完成下列问题:
(1)在所给直角坐标系中画出此函数的图象;
(2)根据函数图象回答:
方程﹣2x+4=0的解是______________;当x_____________时,y>2;当﹣4≤y≤0时,相应x的取值范围是_______________.
22、(4分)用科学记数法表示______.
23、(4分)已知点,,直线与线段有交点,则的取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知某市2018年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2018年10月份的水费为620元,求该企业2018年10月份的用水量.
25、(10分)已知一次函数的图象经过点(1,3)与(﹣1,﹣1)
(1)求这个一次函数的解析式;
(2)试判断这个一次函数的图象是否经过点(﹣,0)
26、(12分)已知一次函数 y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3).
(1)求这个一次函数的关系式;
(2)画出这个一次函数的图象.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
对各项的说法逐一进行判断即可.
【详解】
A. 掷一颗骰子,点数一定小于等于6,正确;
B. 抛一枚硬币,反面不一定朝上,错误;
C. 为了解一种灯泡的使用寿命,宜采用抽样调查的方法,错误;
D. “明天的降水概率为90%”,表示明天会有90%的几率下雨,错误;
故答案为:A.
本题考查了命题的问题,掌握概率的性质、概率统计的方法是解题的关键.
2、D
【解析】
由勾股定理可得AB=20,斜边中线等于斜边的一半,所以MC=1.
【详解】
在Rt△ABC中,AB2=AC2+CB2,
∴AB=20,
∵M点是AB中点,
∴MC=AB=1,
故选D.
本题考查了勾股定理和斜边中线的性质,综合了直角三角形的线段求法,是一道很好的问题.
3、B
【解析】
根据因式分解的定义对各选项分析判断后利用排除法求解.
【详解】
A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;
B、x2-x=x(x-1),故选项正确;
C、x-1=x(1-),不是分解因式,故选项错误;
D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.
故选:B.
本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.
4、A
【解析】
解:阴影部分的面积为2+4=6 ∴镖落在阴影部分的概率为=.
考点:几何概率.
5、D
【解析】
假设与结论相反,可假设“四边形中没有一个角是直角或钝角”.
【详解】
假设与结论相反;
可假设“四边形中没有一个角是直角或钝角”;
与之同义的有“四边形中每一个角都是锐角”;
故选:D
本题考查了反证法,解题的关键在于假设与结论相反.
6、B
【解析】
根据无理数的大概值和1,2比较大小,首先计算出每个选项的大概值.
【详解】
A 选项不是无理数;
B 是无理数且
C 是无理数但
D 是无理数但
故选B.
本题主要考查无理数的比较大小,关键在于估算结果.
7、B
【解析】
原方程组可化为,
∵方程的解为,
∴直线y=mx+n与y=﹣ex+f的交点坐标为(4,6).
故选B.
本题考查二元一次方程组与一次函数的关系.两条直线的交点坐标即为这两条直线的解析式组成的方程组的解.
8、C
【解析】
利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.
【详解】
解:A、>3>,
∴选项A不正确;
B、,
∴选项B不正确;
C、()2=2,
∴选项C正确;
D、=3,
∴选项D不正确.
故选C.
本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(只写一个即可)
【解析】
设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
【详解】
设方程为x2+kx+4=0,由题意得
k2-16=0,
∴k=±4,
∴一次项为(只写一个即可).
故答案为:(只写一个即可).
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
10、
【解析】
分别写出、、的坐标找到变化规律后写出答案即可.
【详解】
解:、,
,
的坐标为:,
同理可得:的坐标为:,的坐标为:,
,
点横坐标为,即:,
点坐标为,,
故答案为:,.
本题考查了规律型问题,解题的关键是根据点的坐标的变化得到规律,利用得到的规律解题.
11、1或3
【解析】
数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值
【详解】
解:连接AC和BD交于一点O,
四边形ABCD为菱形
垂直平分AC,
点P在线段AC的垂直平分线上,即BD上
在直角三角形APO中,由勾股定理得
如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;
如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3
故答案为:1或3
本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.
12、m<1
【解析】
一次函数y=kx+b(k≠2)的k<2时,y的值随x的增大而减小,据此可解答.
【详解】
∵一次函数y=(m-1)x+5,y随着自变量x的增大而减小,
∴m-1<2,
解得:m<1,
故答案是:m<1.
本题考查了一次函数图象与系数的关系.一次函数y=kx+b图象与y轴的正半轴相交⇔b>2,一次函数y=kx+b图象与y轴的负半轴相交⇔b<2,一次函数y=kx+b图象过原点⇔b=2.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.
13、OB=OD.(答案不唯一)
【解析】
AO=OC,有一对对顶角∠AOB与∠COD,添加OB=OD,即得结论.
【详解】
解: ∵OA=OC,∠AOB=∠COD(对顶角相等),OB=OD,
∴△ABO≌△CDO(SAS).
故答案为:OB=OD.(答案不唯一)
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
三、解答题(本大题共5个小题,共48分)
14、(1)(2,−2),7;(2)点P的坐标为(,−)或(−,);(3)点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
【解析】
(1)根据平行线的性质可求点D的坐标,根据重心的定义可得S四边形BEFC=S▱ABCD从而求解;
(2)分两种情况:①点P在AC左边,②点P在AC右边,进行讨论即可求解;
(3)先作出图形,再根据矩形的性质即可求解.
【详解】
解:(1)∵▱ABCD在平面直角坐标系xOy中,点A(−1,0)、B(0,4)、C(3,2),
∴点D的坐标为(2,−2),
∴S▱ABCD=6×4−×1×4−×3×2−×1×4−×3×2=14,
∵点G是对角线AC的中点,
∴S四边形BEFC=S▱ABCD=7;
(2)∵点G是对角线AC的中点,
∴G(1,1),
设直线GH的解析式为y=kx+b,
则,
解得,
∴直线GH的解析式为y=−x+;
①点P在AC右边,
S△ACH=×6×2=6,
∵S△PAC=S四边形BEFC,
1+4×=,
当x=时,y=−×+=−,
∴P(,−);
②点P在AC左边,
由中点坐标公式可得P(−,);
综上所述,点P的坐标为(,−)或(−,);
(3)如图,
设直线GK的解析式为y=kx+b,则,
解得,
则直线GK的解析式为y=−x+,
CP⊥AP时,点P的坐标为(3,0)或(−1,2);
CP⊥AC时,直线AC的解析式为y=x+,
直线CP的解析式为y=−2x+8,
故点P的坐标为(,−);
AP⊥AC时,
同理可得点P的坐标为(−,);
综上所述,点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
本题考查四边形的综合题、矩形的性质、三角形和四边形的面积等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用方程的思想思考问题,属于中考压轴题.
15、87.6米
【解析】
根据题意并结合图象运用解直角三角形中的勾股定理进行分析求解即可.
【详解】
解:由题意结合图象,
∵,
∴,
∵米,
∴CE=AE=100米,米,
∴AG (米),
∵米,
∴AB86.6+1=87.6(米).
本题考查解直角三角形的应用,解题的关键是根据仰角构造直角三角形,利用三角函数求解.
16、(1)1万元 (2)共有5种进货方案 (3)购买A款汽车6辆,B款汽车1辆时对公司更有利
【解析】
分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
(2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
详解:(1)设今年5月份A款汽车每辆售价m万元.则:
,
解得:m=1.
经检验,m=1是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价1万元;
(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:
11≤7.5x+6(15﹣x)≤2.
解得:6≤x≤3.
∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;
(3)设总获利为W万元,购进A款汽车x辆,则:
W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.
当a=0.5时,(2)中所有方案获利相同.
此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.
点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.
17、见解析.
【解析】
首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
【详解】
证明:连结BD,过点B作DE边上的高BF,则BF=b-a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
∴ab+b1+ab=ab+c1+a(b-a),
∴a1+b1=c1.
此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
18、OE=cm
【解析】
根据菱形的性质及三角形中位线定理解答.
【详解】
∵ABCD是菱形,∴OA=OC,OB=OD,OB⊥OC.
又∵AC=8cm,BD=6cm,∴OA=OC=4cm,OB=OD=3cm.
在直角△BOC中,由勾股定理得:BC5(cm).
∵点E是AB的中点,∴OE是△ABC的中位线,∴OEcm.
本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
观察图像,由直线y=x+2和正方形的关系,即可得出规律,推导出Cn的横坐标.
【详解】
解:根据题意,由图像可知,,
正方形A1B1C1O、 A2B2C2C1
,直线y=x+2的斜率为1,则
以此类推,,
此题主要考查一次函数图像的性质和正方形的关系,推导得出关系式.
20、(0,1).
【解析】
试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
试题解析:如图,
连接AD、BE,作线段AD、BE的垂直平分线,
两线的交点即为旋转中心O′.其坐标是(0,1).
考点: 坐标与图形变化-旋转.
21、(1)见解析;(2)x=2,<1,2≤x≤1
【解析】
(1)列表,描点,连线即可;
(2)利用函数图象得出y=0时,x的值;观察y>2时,函数图象对应的x的取值;观察函数图象,即可确定当﹣1≤y≤0时,x对应的取值范围.
【详解】
(1)列表:
描点,连线可得:
(2)根据函数图象可得:
当y=0时,x=2,故方程﹣2x+1=0的解是x=2;
当x<1时,y>2;
当﹣1≤y≤0时,相应x的取值范围是2≤x≤1.
故答案为:x=2;<1;2≤x≤1.
本题考查的是作一次函数的图象及一次函数与不等式的关系,能把式子与图象结合起来是关键.
22、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000021的小数点向右移动1位得到2.1,
所以0.00000021用科学记数法表示为2.1×10-1,
故答案为2.1×10-1.
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
23、﹣1≤m≤1.
【解析】
分别把点,代入直线,求得m的值,由此即可判定的取值范围.
【详解】
把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;
把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,
所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1.
故答案为:﹣1≤m≤1.
本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=6x﹣100;(2)1吨
【解析】
(1)设y关于x的函数关系式y=kx+b,然后利用待定系数法求一次函数解析式解答;
(2)把水费620元代入函数关系式解方程即可.
【详解】
(1)设y关于x的函数关系式y=kx+b,则:
解得:,所以,y关于x的函数关系式是y=6x﹣100;
(2)由图可知,当y=620时,x>50,所以,6x﹣100=620,解得:x=1.
答:该企业2018年10月份的用水量为1吨.
本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.
25、(1)y=2x+1;(2)经过点(-,0).
【解析】
(1)设一次函数的解析式为:y=kx+b,把点(1,3)与(﹣1,﹣1)代入求出k和b即可;
(2)当x=-时,求出y的值,即可判断出.
【详解】
解:(1)设一次函数的解析式为:y=kx+b,
把点(1,3)与(﹣1,﹣1)代入解析式可得: ,
解得:k=2,b=1,
所以直线的解析式为:y=2x+1;
(2)因为在y=2x+1中,当x=﹣时,y=0,
所以一次函数的图象经过点(﹣,0).
求一次函数的解析式并根据解析式判断图象是否经过某点是本题的考点,待定系数法求出一次函数解析式是解题的关键.
26、(1)y=-2x+1;(2)见解析.
【解析】
(1)将点(2,-3)和(-1,3)代入y=kx+b,运用待定系数法即可求出该一次函数的解析式;
(2)经过两点(2,-3)和(-1,3)画直线,即可得出这个一次函数的图象;
【详解】
解:(1)∵一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3),
∴;解得:
∴该一次函数的解析式为y=-2x+1;
(2)如图,经过两点(2,-3)和(-1,3)画直线,
即为y=-2x+1的图象;
本题主要考查了运用待定系数法求一次函数的解析式,一次函数的性质,属于基础知识,利用图象与坐标交点作出图象是解题关键,同学们应熟练掌握.
题号
一
二
三
四
五
总分
得分
批阅人
x
2
0
y=﹣2x+1
0
1
2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省廊坊广阳区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年河北省廊坊广阳区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年哈尔滨松北区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年哈尔滨松北区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。