终身会员
搜索
    上传资料 赚现金

    2024-2025学年山东省潍坊市临朐九上数学开学监测试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年山东省潍坊市临朐九上数学开学监测试题【含答案】第1页
    2024-2025学年山东省潍坊市临朐九上数学开学监测试题【含答案】第2页
    2024-2025学年山东省潍坊市临朐九上数学开学监测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东省潍坊市临朐九上数学开学监测试题【含答案】

    展开

    这是一份2024-2025学年山东省潍坊市临朐九上数学开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
    A.6B.8C.10D.12
    2、(4分)下列计算中,正确的是( )
    A.=5B.C.=3D.
    3、(4分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为( )
    A.()2013B.()2014C.()2013D.()2014
    4、(4分)一元二次方程4x2+1=3x的根的情况是( )
    A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根
    5、(4分)若线段a,b,c组成直角三角形,则它们的比可以为( )
    A.2∶3∶4B.7∶24∶25C.5∶12∶14D.4∶6∶10
    6、(4分)五一假期小明一家自驾去距家360km的某地游玩,全程的前一部分为高速公路,后一部分为乡村公路.若小汽车在高速公路和乡村公路上分别以某一速度匀速行驶,行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是( )
    A.小汽车在乡村公路上的行驶速度为60km/h
    B.小汽车在高速公路上的行驶速度为120km/h
    C.乡村公路总长为90km
    D.小明家在出发后5.5h到达目的地
    7、(4分)袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有( )
    A.3个B.不足3个
    C.4个D.5个或5个以上
    8、(4分)在 2008 年的一次抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 10 人 的捐款分别是:5 万,8 万,10 万,10 万,10 万,20 万,20 万,30 万,50 万,100 万.这组数据的众数和中位数分别是( )
    A.10 万,15 万B.10 万,20 万C.20 万,15 万D.20 万,10 万
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,,,,则成绩最稳定的是______.
    10、(4分)已知,,,,,……(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,____________.
    11、(4分)若关于的方程有增根,则的值为________.
    12、(4分)如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________
    13、(4分)如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图:在▱ABCD中,E、F分别为对角线BD上的点,且BE=DF,判断四边形AECF的形状,并说明理由.
    15、(8分)如图,方格纸中每个小正方形的边长均为1,我们把每个小正方形的顶点叫做格点. 如:线段AB的两个端点都在格点上.
    (1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在格点上,且平行四边形ABCD的面积为15;
    (2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在格点上,则菱形ABEF的对角线AE=________,BF=________;
    (3)在图3中画一个以AB为边的矩形ABMN(不是正方形),点M、N在格点上,则矩形ABMN的长宽比=______.

    16、(8分)甲、乙两种客车共7辆,已知甲种客车载客量是30人,乙种客车载客量是45人.其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需2300元.
    (1)租用一辆甲种客车、一辆乙种客车各多少元?
    (2)设租用甲种客车x辆,总租车费为y元,求y与x的函数关系;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
    17、(10分)如图,D是△ABC内一点,连接DB、DC、DA,并将AB、DB、DC、AC的中点E、H、G、F依次连接,得到四边形EHGF.
    (1)求证:四边形EHGF是平行四边形;
    (2)若BD⊥CD,AD=7,BD=8,CD=6,求四边形EHGF的周长.
    18、(10分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知:AB=2m,CD=28cm,则AB:CD=_____.
    20、(4分)当x________时,分式有意义.
    21、(4分)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为 .
    22、(4分)如图,在菱形ABCD中,过点C作CEBC交对角线BD 于点 E ,若ECD20 ,则ADB____________.
    23、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,四边形为平行四边形,为坐标原点,,将平行四边形绕点逆时针旋转得到平行四边形,点在的延长线上,点落在轴正半轴上.
    (1)证明:是等边三角形:
    (2)平行四边形绕点逆时针旋转度.的对应线段为,点的对应点为
    ①直线与轴交于点,若为等腰三角形,求点的坐标:
    ②对角线在旋转过程中设点坐标为,当点到轴的距离大于或等于时,求的范围.
    25、(10分)在一次夏令营活动中,主办方告诉营员们A、B两点的位置及坐标分别为(-3,1)、(-2,-3),同时只告诉营员们活动中心C的坐标为(3,2)(单位:km)
    (1)请在图中建立直角坐标系并确定点C的位置;
    (2)若营员们打算从点B处直接赶往C处,请用方向角B和距离描述点C相对于点B的位置.
    26、(12分)如图,矩形的对角线与相交点分别为的中点,求的长度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    因为BC为AF边上的高,要求△AFC的面积,求得AF即可,先求证△AFD′≌△CFB,得BF=D′F,设D′F=BF=x,则在Rt△AFD′中,根据勾股定理列方程求出x即可得到结果.
    【详解】
    解:由四边形ABCD为矩形以及折叠可得,AD′=AD=BC,∠D=∠D′=∠B,
    又∠AFD′=∠CFB,
    ∴△AFD′≌△CFB(AAS),
    ∴D′F=BF,
    设D′F=BF=x,则AF=8﹣x,
    在Rt△AFD′中,(8﹣x)2=x2+42,
    解得:x=3,
    ∴AF=8-x=8﹣3=5,
    ∴S△AFC=•AF•BC=1.
    故选:C.
    本题考查了折叠的性质,矩形的性质,勾股定理以及全等三角形的判定与性质等知识,本题中设D′F=x,在直角三角形AFD′中运用勾股定理求x是解题的关键.
    2、A
    【解析】
    根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.
    【详解】
    解:∵=5,故选项A正确,
    ∵不能合并,故选项B错误,
    ∵,故选项C错误,
    ∵,故选项D错误,
    故选:A.
    本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
    3、C
    【解析】
    根据等腰直角三角形的性质可得出S2+S2=S1,写出部分Sn的值,根据数的变化找出变化规律“Sn=()n−2”,依此规律即可得出结论.
    【详解】
    解:在图中标上字母E,如图所示.
    ∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
    ∴DE2+CE2=CD2,DE=CE,
    ∴S2+S2=S1.
    观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
    ∴Sn=()n−2.
    当n=2016时,S2016=()2016−2=()2012.
    故选:C.
    本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“Sn=()n−2”.本题属于中档题,难度不大,解决该题型题目时,写出部分Sn的值,根据数值的变化找出变化规律是关键.
    4、A
    【解析】
    先求出△的值,再判断出其符号即可.
    【详解】
    解:原方程可化为:4x2﹣3x+1=0,
    ∵△=32﹣4×4×1=-7<0,
    ∴方程没有实数根.
    故选A.
    5、B
    【解析】
    要组成直角三角形,三条线段的比值要满足较小的比值的平方和等于较大比值的平方.结合选项分析即可得到答案.
    【详解】
    A. 22+32≠42,故本选项错误;
    B. 72+242=252,故本选项正确;
    C. 52+122≠142,故本选项错误;
    D. 4262≠102,故本选项错误.
    故选B.
    本题考查勾股定理的逆定理,解题的关键是掌握勾股定理的逆定理.
    6、A
    【解析】
    根据一次函数图象的性质和“路程=速度×时间”的关系来分析计算即可.
    【详解】
    解:小汽车在乡村公路上的行驶速度为:(270﹣180)÷(3.5﹣2)=60km/h,故选项A正确,
    小汽车在高速公路上的行驶速度为:180÷2=90km/h,故选项B错误,
    乡村公路总长为:360﹣180=180km,故选项C错误,
    小明家在出发后:2+(360﹣180)÷60=5h到达目的地,故选项D错误,
    故选:A.
    一次函数在实际生活中的应用是本题的考点,根据题意读懂图形及熟练掌握“路程=速度×时间”的关系是解题的关键.
    7、D
    【解析】
    根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.
    解:∵袋中有红球4个,取到白球的可能性较大,
    ∴袋中的白球数量大于红球数量,
    即袋中白球的个数可能是5个或5个以上.
    故选D.
    8、A
    【解析】
    根据众数、中位数的定义进行判断即可
    【详解】
    解:10万出现次数最多为3次,10万为众数;
    从小到大排列的第5,6两个数分别为10万,20万,其平均值即中位数为15万.
    故选:A.
    本题考查数据的众数与中位数的判断,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个,解题时要细心.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、甲
    【解析】
    根据题目中的四个方差,可以比较它们的大小,由方差越小越稳定可以解答本题.
    【详解】
    解:∵0.57<0.59<0.62<0.67,
    ∴成绩最稳定的是甲,
    故答案为:甲
    本题考查数据的波动。解答本题的关键是明确方差越小越稳定.
    10、-
    【解析】
    根据Sn数的变化找出Sn的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.
    【详解】
    解:S1=,S2=-S1-1=--1=-,S3==-,S4=-S3-1= ,=-(a+1),S6=-S5-1=(a+1)-1=a,S7= ,…,
    ∴Sn的值每6个一循环.
    ∵2018=336×6+2,
    ∴S2018=S2=-.
    故答案为:-.
    此题考查规律型中数字的变化类,根据数值的变化找出Sn的值,每6个一循环是解题的关键.
    11、;
    【解析】
    先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.
    【详解】
    去分母得:2x+1-x-2=m
    解得:x=m+1
    ∵分式方程有增根
    ∴x=-2
    ∴m+1=-2
    解得:m=-1
    故答案为;-1.
    本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.
    12、6
    【解析】
    分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.
    详解:纸条的对边平行 , 即 AB ∥ CD,AD ∥ BC ,
    ∴ 四边形 ABCD 是平行四边形,
    ∵ 两张纸条的宽度都是 3 ,
    ∴S四边形ABCD=AB×3=BC×3 ,
    ∴AB=BC ,
    ∴ 平行四边形 ABCD 是菱形,即四边形 ABCD 是菱形.
    如图 , 过 A 作 AE⊥BC, 垂足为 E,
    ∵∠ABC=60∘ ,
    ∴∠BAE=90°−60°=30°,
    ∴AB=2BE ,
    在 △ABE 中 ,AB2=BE2+AE2 ,
    即 AB2=AB2+32 ,
    解得 AB=,
    ∴S四边形ABCD=BC⋅AE=×3=.
    故答案是:.
    点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.
    13、(﹣4,3).
    【解析】
    求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.
    【详解】
    解:∵点E(﹣8,0)在直线y=kx+6上,
    ∴﹣8k+6=0,
    ∴k=,
    ∴y=x+6,
    ∴P(x, x+6),
    由题意:×6×(x+6)=1,
    ∴x=﹣4,
    ∴P(﹣4,3),
    故答案为(﹣4,3).
    本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析
    【解析】
    分析:
    如下图,连接AC,由已知条件易得:OA=OC、OB=OD,结合BE=DF可得OE=OF,由此可得四边形AECF是平行四边形.
    详解:
    连接AC,与BD相交于O,如图所示:
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵BE=DF,
    ∴OE=OF,
    ∴AC与EF互相平分,
    ∴四边形AECF为平行四边形.
    点睛:熟记:“平行四边形的对角线互相平分和对角线互相平分是四边形是平行四边形”是解答本题的关键.
    15、(1)答案见详解;(1),;(3)1.
    【解析】
    (1)如图1中,根据平行四边形的定义,画出第为5,高为3的平行四边形即可.
    (1)如图1中,根据菱形的判定画出图形即可.
    (3)根据矩形的定义画出图形即可.
    【详解】
    解:(1)如图1中,平行四边形即为所求;
    (1)如图1中,菱形即为所求.,,
    故答案为,;
    (3)如图3中,矩形即为所求,;
    故答案为1.
    本题考查勾股定理,菱形的性质,矩形的性质等知识,熟练掌握基本知识是解题的关键.
    16、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)当租用甲种客车2辆时,总租车费最少,最少费用为1元.
    【解析】
    (1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,则
    5x+2(x+100)=2300,解方程即可;
    (2)由题意y=300x+400(7﹣x)=﹣100x+2800,又30x+45(7﹣x)≥275,求出x的最大值即可.
    【详解】
    (1)设租用一辆甲种客车的费用为x元,
    则一辆乙种客车的费用为(x+100)元,则
    5x+2(x+100)=2300,
    解得x=300,
    答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.
    (2)由题意y=300x+400(7﹣x)=﹣100x+2800,
    又30x+45(7﹣x)≥275,解得x≤,
    ∴x的最大值为2,
    ∵﹣100<0,∴x=2时,y的值最小,最小值为1.
    答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.
    本题考核知识点:一次函数的应用. 解题关键点:把问题转化为解一元一次方程或不等式问题.
    17、(1)见解析;(2)1
    【解析】
    (1)证EF是△ABC的中位线,HG是△DBC的中位线,得出EF∥BC,EF=BC,HG∥BC,HG=BC,则EF∥HG,EF=HG,即可得出结论;
    (2)由勾股定理求出BC=10,则EF=GH=BC=5,由三角形中位线定理得出EH= AD=,即可得出答案.
    【详解】
    证明:(1)∵E、F分别是AB、AC的中点,
    ∴EF∥BC,EF=BC.
    ∵H、G分别是DB、DC的中点,
    ∴HG∥BC,HG=BC.
    ∴HG=EF,HG∥EF.
    ∴四边形EHGF是平行四边形.
    (2)∵BD⊥CD,BD=8,CD=6,
    ∴BC===10,
    ∵E、F、H、G分别是AB、AC、BD、CD的中点,
    ∴EH=FG=AD=3.5,
    EF=GH=BC=5,
    ∴四边形EHGF的周长=EH+GH+FG+EF=1.
    本题考查了平行四边形的判定与性质、三角形中位线定理以及勾股定理;熟练掌握三角形中位线定理是解题的关键.
    18、
    【解析】
    首先过点A作AD⊥BC,根据Rt△ADC和Rt△ABD的勾股定理分别求出CD和BD的长度,从而得出BC的长度
    【详解】
    过点A作AD⊥BC,则△ADC和△ABD为直角三角形
    ∵∠C=30° AC=4cm ∴AD=2cm CD=cm
    根据Rt△ABD的勾股定理可得:BD=cm
    ∴BC=BD+CD=()cm
    本题考查直角三角形的勾股定理,解题关键在于能够构造出直角三角形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、50:7
    【解析】
    先将2m转换为200cm,再代入计算即可.
    【详解】
    ∵AB=2m=200cm,CD=28cm,
    ∴AB:CD=200:28=50:7.
    故答案为50:7.
    本题考查比例线段,学生们掌握此定理即可.
    20、
    【解析】
    根据分母不等于0列式求解即可.
    【详解】
    由题意得,x−1≠0,
    解得x≠1.
    故答案为:≠1.
    本题考查分式有意义的条件,熟练掌握分式的基本性质是解题关键.
    21、(2.5,4)或(3,4)或(2,4)或(8,4).
    【解析】
    试题解析:∵四边形OABC是矩形,
    ∴∠OCB=90°,OC=4,BC=OA=10,
    ∵D为OA的中点,
    ∴OD=AD=5,
    ①当PO=PD时,点P在OD得垂直平分线上,
    ∴点P的坐标为:(2.5,4);
    ②当OP=OD时,如图1所示:
    则OP=OD=5,PC==3,
    ∴点P的坐标为:(3,4);
    ③当DP=DO时,作PE⊥OA于E,
    则∠PED=90°,DE==3;
    分两种情况:当E在D的左侧时,如图2所示:
    OE=5-3=2,
    ∴点P的坐标为:(2,4);
    当E在D的右侧时,如图3所示:
    OE=5+3=8,
    ∴点P的坐标为:(8,4);
    综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4)
    考点:1.矩形的性质;2.坐标与图形性质;3.等腰三角形的判定;4.勾股定理.
    22、35°
    【解析】
    由已知条件可知:∠BCD=110°,根据菱形的性质即可求出ADB的度数.
    【详解】
    ∵CEBC,ECD20,
    ∴∠BCD=110°,
    ∵四边形ABCD是菱形,∴∠BCD+∠ADC=180°,∠ADB=,
    ∴∠ADC=70°,∴∠ADB==35°,
    本题考查了菱形的性质,牢记菱形的性质是解题的关键.
    23、8或1
    【解析】
    解:如图所示:①当AE=1,DE=2时,
    ∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
    ∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
    ∴平行四边形ABCD的周长=2(AB+AD)=8;
    ②当AE=2,DE=1时,同理得:AB=AE=2,
    ∴平行四边形ABCD的周长=2(AB+AD)=1;
    故答案为8或1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析(2)①P(0, )或(0, -4)②-8≤m≤-或≤m≤1
    【解析】
    (1)根据A点坐标求出∠AOF=60°,再根据旋转的特点得到AO=AF,故可求解;
    (2)①设P(0,a)根据等腰三角形的性质分AP=OP和AO=OP,分别求出P点坐标即可;
    ②分旋转过程中在第三象限时到轴的距离等于与旋转到第四象限时到轴的距离等于,再求出当旋转180°时的坐标,即可得到m的取值.
    【详解】
    (1)如图,过A点作AH⊥x轴,

    ∴OH=2,AH=2
    ∴AO=
    故AO=2OH
    ∴∠OAH=30°
    ∴∠AOF=90°-∠OAH=60°
    ∵旋转
    ∴AO=AF
    ∴△AOF是等边三角形;
    (2)①设P(0,a)
    ∵是等腰三角形
    当AP=OP时,(2-0)2+(2-a)2=a2
    解得a=
    ∴P(0, )
    当AO=OP时,OP= AO=4
    ∴P(0, -4)
    故为等腰三角形时,求点的坐标是(0, )或(0, -4);
    ②旋转过程中点的对应点为,
    当开始旋转,至到轴的距离等于时,m的取值为-8≤m≤-;
    当旋转到第四象限,到轴的距离等于时,m=
    当旋转180°时,设C’的坐标为(x,y)
    ∵C、关于A点对称,

    解得
    ∴(1,)
    ∴m的取值为≤m≤1,
    综上,当点到轴的距离大于或等于时,求的范围是-8≤m≤-或≤m≤1.
    此题主要考查旋转综合题,解题的关键是熟知等边三角形的判定、等腰三角形的性质、勾股定理、对称性的应用.
    25、(1)见解析;(2)点C在点B北偏东45°方向上,距离点B的5km处.
    【解析】
    (1)利用A,B点坐标得出原点位置,建立坐标系,进而得出C点位置;
    (2)利用所画图形,进而结合勾股定理得出答案.
    【详解】
    (1)根据A(-3,1),B(-2,-3)画出直角坐标系,
    描出点C(3,2),如图所示:
    (2)∵BC=5,
    ∴点C在点B北偏东45°方向上,距离点B的5km处.
    此题主要考查了坐标确定位置以及勾股定理等知识,得出原点的位置是解题关键.
    26、
    【解析】
    根据矩形的性质可得AC=BD=10,BO=DO=BD=1,再根据三角形中位线定理可得PQ=DO=2.1.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AC=BD=10,BO=DO=BD,
    ∴OD=BD=1,
    ∵点P、Q是AO,AD的中点,
    ∴PQ是△AOD的中位线,
    ∴.
    此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年山东省潍坊市寿光市、安丘市数学九上开学经典试题【含答案】:

    这是一份2024-2025学年山东省潍坊市寿光市、安丘市数学九上开学经典试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省潍坊市青州市数学九年级第一学期开学监测模拟试题【含答案】:

    这是一份2024-2025学年山东省潍坊市青州市数学九年级第一学期开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省临朐县数学九上开学复习检测模拟试题【含答案】:

    这是一份2024-2025学年山东省临朐县数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map