2024-2025学年山东省潍坊市寿光市、安丘市数学九上开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式计算正确的是( )
A.3﹣=3B.2+=2C.=2D.=4
2、(4分)若分式在实数范围内有意义,则实数的取值范围是( )
A.B.C.D.
3、(4分)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为( )
A.12B.11C.10D.9
4、(4分)如图,在矩形中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( )
A.B.C.D.
5、(4分)如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )
A.2B.2C.D.4
6、(4分)若,则的值为( )
A.14B.16C.18D.20
7、(4分)如图,△ABC中,∠ C=900,∠CAB=600,AD平分∠BAC,点D到AB的距离DE=3cm,则BC等于( )
A.3cmB.6cmC.9cmD.12cm
8、(4分)已知一次函数b是常数且,x与y的部分对应值如下表:
那么方程的解是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2,则线段BC的长为_____.
10、(4分)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过A1点作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2019的坐标为______.
11、(4分)如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.
12、(4分)如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.
13、(4分)如图是一块地的平面示意图,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,则这块地的面积为_____m2.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商店分两次购进、两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
(1)求、两种商品每件的进价分别是多少元?
(2)商场决定种商品以每件30元出售,种商品以每件100元出售.为满足市场需求,需购进、两种商品共1000件,且种商品的数量不少于种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
15、(8分)如图,在△ABC中,AB=10,AD平分∠BAC交BC于点D,若AD=8,BD=6,求AC的长.
16、(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
(1)统计表中的________,________,________;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
17、(10分)解不等式组:,并将不等式组的解集在所给数轴上表示出来.
18、(10分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据,,的方差为4,那么数据,,的方差是___________.
20、(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.
21、(4分)当0<m<3时,一元二次方程x2+mx+m=0的根的情况是_______.
22、(4分)如图,在中,,点,,分别是,,的中点,若,则线段的长是__________.
23、(4分)如图,和的面积相等,点在边上,交于点.,,则的长是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).
(1)补全条形统计图;
(2)求出扇形统计图中册数为4的扇形的圆心角的度数;
(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了 .
25、(10分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图
所示:
(1)根据图像,直接写出y1、y2关于x的函数关系式;
(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;
(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
26、(12分)分解因式: 5x2-45
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接利用二次根式的性质分别计算得出答案.
【详解】
A、3﹣=2,故此选项错误;
B、2+,无法计算,故此选项错误;
C、=2,正确;
D、÷==2,故此选项错误;
故选:C.
考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.
2、D
【解析】
根据分式有意义的条件即可求出答案.
【详解】
解:由分式有意义的条件可知:,
,
故选:.
本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
3、D
【解析】
根据三角形中位线定理分别求出DE、EF、DF,计算即可.
【详解】
∵点D,E分别AB、BC的中点,
∴DE=AC=3.5,
同理,DF=BC=3,EF=AB=2.5,
∴△DEF的周长=DE+EF+DF=9,
故选D.
本题考查的是三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
4、B
【解析】
分别表示出空白矩形的长和宽,列式计算即可.
【详解】
解:空白矩形的长为,宽为,
∴面积=
故选:B.
本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.
5、B
【解析】
根据直线解析式可得OA和OB长度,利用勾股定理可得AB长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB.
【详解】
当x=0时,y=2
∴点B(0,2)
当y=0时,-x+2=0
解之:x=2
∴点A(2,0)
∴OA=OB=2
∵点C在线段OD的垂直平分线上
∴OC=CD
∵△OBC和△OAD的周长相等,
∴OB+OC+BC=OA+OD+AD
∴OB+BC+CD=OA+OD+AD
OB+BD=OA+OD+AD即OB+AB+AD=OB+OD+AD
∴AB=OD
在Rt△AOB中
AB=OD=
故选B
本题主要考查了一次函数图象上点坐标特征、线段垂直平分线的性质、以及勾股定理.
6、C
【解析】
先将移项得:,然后两边平方,再利用完全平方公式展开,整理即可得解.
【详解】
∵ ,∴,∴,
∴ ,
故选C.
本题考查了完全平方公式,牢牢掌握平方公式是解决本题的关键.
7、C
【解析】
根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.
【详解】
解:∵∠C=90°,∠CAB=60°,
∴∠B=90°-60°=30°,
∵DE⊥AB,
∴BD=2DE=2×3=6cm,
∵AD平分∠BAC,∠C=90°,DE⊥B,
∴CD=DE=3cm,
∴BC=BD+CD=6+3=9cm.
故选:C.
本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.
8、C
【解析】
因为一次函数b是常数且,x与y的部分对应值如表所示,求方程的解即为y=0时,对应x的取值,根据表格找出y=0时,对应x的取值即可求解.
【详解】
根据题意可得:的解是一次函数中函数值y=0时,自变量x的取值,
所以y=0时, x=1,
所以方程的解是x=1,
故选C.
本题主要考查一元一次方程与一次函数的关系,解决本题的关键是要熟练掌握一次函数与一元一次方程的关系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
过C作CM⊥DE于M,过E作EN⊥BC于N,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠BFE=∠DFC=∠ADE,根据旋转的性质得到∠BFE=∠DFC=∠ADE=60°,推出∠DCM=∠EBN,根据相似三角形的性质得到CM=BN,DM=EN,得到FM=BN,设FM=BN=x,EN=y,则DM=y,CM=x,根据勾股定理即可得到结论.
【详解】
解:过C作CM⊥DE于M,过E作EN⊥BC于N,
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠BFE=∠DFC=∠ADE,
∵将边AD绕点D逆时针旋转60°得到DE,
∴∠BFE=∠DFC=∠ADE=60°,
∴∠FCM=∠FBN=30°,
∵∠DCF+∠BEF=150°,
∴∠DCM+∠BEN=90°,
∵∠BEN+∠EBN=90°,
∴∠DCM=∠EBN,
∴△DCM∽△EBN,
∴==,
∴CM=BN,DM=EN,
在Rt△CMF中,CM=FM,
∴FM=BN,
设FM=BN=x,EN=y,则DM=y,CM=x,
∴CF=2x,EF=y,
∵BC=AD=DE,
∴y+x+y=2x+y+x,
∴x=y,
∵x2+y2=4,
∴y=,x=,
∴BC=2,
故答案为:2.
【点评】
本题考查了平行四边形的性质,相似三角形的判定和性质,勾股定理,旋转的性质,正确的作出辅助线是解题的关键.
10、(-21009,-21010)
【解析】
根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.
【详解】
当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=-x=2时,x=-2,
∴点A2的坐标为(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).
∵2019=504×4+3,
∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).
故答案为(-21009,-21010).
本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.
11、
【解析】
延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.
【详解】
解:延长GE交AB于点O,作PH⊥OE于点H.
则PH∥AB.
∵P是AE的中点,
∴PH是△AOE的中位线,
∴PH= OA= ×(3-1)=1.
∵直角△AOE中,∠OAE=45°,
∴△AOE是等腰直角三角形,即OA=OE=2,
同理△PHE中,HE=PH=1.
∴HG=HE+EG=1+1=2.
∴在Rt△PHG中,PG=
故答案是:.
本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.
12、
【解析】
过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.
【详解】
解:过P作PH⊥OY于点H,
∵PD∥OY,PE∥OX,
∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,
∴EP=OD=a,∠EPH=30°,
∴EH=EP=a,
∴a+2b=2()=2(EH+EO)=2OH,
∴当P在点B处时,OH的值最大,
此时,OC=OA=1,AC==BC,CH=,
∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.
故答案为5.
本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.
13、1
【解析】
试题解析:连接AC,
∵AD=4m,CD=3m,∠ADC=90°,
∴AC===5,
∵AB=13m,BC=12m,
∴AB2=BC2+CD2,即△ABC为直角三角形,
∴这块地的面积为S△ABC-S△ACD=AC•BC-AD•CD=×5×12-×3×4=1.
三、解答题(本大题共5个小题,共48分)
14、(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.
【解析】
(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.
【详解】
(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,
根据题意得:
,
解得:
.
答:A种商品每件的进价为20元,B种商品每件的进价为80元.
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,
根据题意得:w=(30-20)(1000-m)+(100-80)m=10m+1.
∵A种商品的数量不少于B种商品数量的4倍,
∴1000-m≥4m,
解得:m≤2.
∵在w=10m+1中,k=10>0,
∴w的值随m的增大而增大,
∴当m=2时,w取最大值,最大值为10×2+1=120,
∴当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.
此题考查一次函数的应用,二元一次方程组的应用,解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.
15、AC=1
【解析】
首先利用勾股定理的逆定理证明△ADB是直角三角形,再证明△ADB≌△ADC即可解决问题.
【详解】
在△ABD中,∵AD2+BD2=82+62=10,AB2=12=10,∴AD2+BD2=AB2,∴∠ADB=90°,∴∠ADB=∠ADC.
∵AD是∠BAC的平分线,∴∠BAD=∠CAD.
在△ADB和△ADC中,∵,∴△ADB≌△ADC(ASA),∴AC=AB=1.
本题考查了全等三角形的判定和性质、勾股定理的逆定理、等腰三角形的判定和性质等知识,解题的关键是勾股定理的逆定理的正确应用,属于中考常考题型.
16、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
【解析】
分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
详解:(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为10,0.28,50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
17、,见解析
【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【详解】
解:
∵解不等式①得:x≤4,
解不等式②得:x<2,
∴原不等式组的解集为x<2,
不等式组的解集在数轴上表示如下:
.
此题考查解一元一次不等式组,在数轴上表示不等式组的解集,解题关键是能根据不等式得解集找出不等式组的解集.
18、详见解析.
【解析】
首先判定四边形AEFD是平行四边形,然后证明DF=EF,进而证明出四边形AEFD是菱形.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∵EF∥AD,
∴四边形AEFD是平行四边形,
∵DE平分∠ADC,
∴∠1=∠2,
∵EF∥AD,
∴∠1=∠DEF,
∴∠2=∠DEF,
∴DF=EF,
∵四边形AEFD是平行四边形,
∴四边形AEFD是菱形.
本题主要考查菱形的判定定理,掌握邻边相等的平行四边形是菱形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
设数据,,的平均数为m,据此可得数据a+2,b+2,c+2的平均数为m+2,然后根据方差公式进行计算即可得.
【详解】
设数据,,的平均数为m,
则有a+b+c=3m,=4,
∴a+2,b+2,c+2的平均数为(a+2+b+2+c+2)÷3=(3m+6)÷3=m+2,
方差为:
==4,
故答案为:4.
本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.
20、18
【解析】
是 的中位线, .
, .
由勾股定理得
.
是 的中线, .
∴△CEF的周长为6.5+6.5+5=18
21、无实数根
【解析】
根据一元二次方程根的判别式判断即可
【详解】
一元二次方程x2+mx+m=0,则△=m2-4m=(m-2)2-4,当0<m<3时,△<0,故无实数根
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
22、1.
【解析】
先根据直角三角形斜边上的中线等于斜边的一半求出AB的长,再根据三角形中位线定理求出EF的长即可.
【详解】
中,,D是AB的中点,
即CD是直角三角形斜边上的中线,
,
又分别是的中点,
∴是的中位线,
,
故答案为:1.
此题主要考查了直角三角形的性质以及三角形中位线定理,熟练掌握它们的性质是解答此题的关键.
23、14
【解析】
根据题意可得和的高是相等的,再根据,可得的高的比值,进而可得的比值,再计算DF的长.
【详解】
解:根据题意可得和的高是相等的
故答案为14.
本题主要考查三角形的相似比等于高的比,这是一个重要的考点,必须熟练掌握.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)75°(3)3人
【解析】
(1)用读书为6册的人数除以它所占的百分比得到调查的总人数;再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,即可解答
(2)用4册的人数除以总人数乘以360°即可解答
(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.
【详解】
(1)抽查的学生总数为6÷25%=24(人),
读书为5册的学生数为24-5-6-4=9(人)
则条形统计图为:
(2) =75°
(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.
此题考查条形统计图,扇形统计图,中位数的定义,解题关键在于看懂图中数据
25、(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距离为150km或300km
【解析】
(1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;
(2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;
(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.
【详解】
(1)设y1=k1x,由图可知,函数图象经过点(10,600),
∴10k1=600,
解得:k1=60,
∴y1=60x(0≤x≤10),
设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则
,
解得:
∴y2=-100x+600(0≤x≤6);
(2)由题意,得
60x=-100x+600
x=,
当0≤x<时,S=y2-y1=-160x+600;
当≤x<6时,S=y1-y2=160x-600;
当6≤x≤10时,S=60x;
即;
(3)由题意,得
①当A加油站在甲地与B加油站之间时,(-100x+600)-60x=200,
解得x=,
此时,A加油站距离甲地:60×=150km,
②当B加油站在甲地与A加油站之间时,60x-(-100x+600)=200,
解得x=5,此时,A加油站距离甲地:60×5=300km,
综上所述,A加油站到甲地距离为150km或300km.
26、5(x+3)(x-3)
【解析】
先提出公因式5,然后用平方差公式进行分解即可。
【详解】
解:原式=5(x+3)(x-3)
故答案为:5(x+3)(x-3)
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键
题号
一
二
三
四
五
总分
得分
x
0
1
2
3
y
6
4
2
0
购进数量(件)
购进所需费用(元)
第一次
30
40
3800
第二次
40
30
3200
本数(本)
频数(人数)
频率
5
0.2
6
18
0.36
7
14
8
8
0.16
合计
1
2024-2025学年山东省烟台市莱山区九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年山东省烟台市莱山区九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省潍坊市临朐九上数学开学监测试题【含答案】: 这是一份2024-2025学年山东省潍坊市临朐九上数学开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省青岛市第九中学九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年山东省青岛市第九中学九上数学开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。