2024-2025学年山东省郓城县联考数学九上开学检测模拟试题【含答案】
展开这是一份2024-2025学年山东省郓城县联考数学九上开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形
B.四个内角都相等的四边形是矩形
C.四条边都相等的四边形是菱形
D.两条对角线垂直且平分的四边形是正方形
2、(4分)已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是( )
A.B.C.D.
3、(4分)用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
4、(4分)正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )
A.2B.-2C.4D.-4
5、(4分)一次函数y=kx-(2-b)的图像如图所示,则k和b的取值范围是()
A.k>0,b>2B.k>0,b<2
C.k<0,b>2D.k<0,b<2
6、(4分)在函数y=中,自变量x的取值范围是( )
A.x≥-3且x≠0B.x<3
C.x≥3D.x≤3
7、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为( )
A.3B.4C.5D.6
8、(4分)化简结果正确的是( )
A.xB.1C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次根式中字母 a 的取值范围是______.
10、(4分)若关于的分式方程有解,则的取值范围是_______.
11、(4分)单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是____分.
12、(4分)如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.
13、(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.
三、解答题(本大题共5个小题,共48分)
14、(12分)王老师为了了解学生在数学学习中的纠错情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年级(5)班和八年级(6)班进行了检测.并从两班各随机抽取10名学生的得分绘制成下列两个统计图.根据以上信息,整理分析数据如下:
(1)求出表格中a,b,c的值;
(2)你认为哪个班的学生纠错得分情况比较整齐一些,通过计算说明理由.
15、(8分)计算:(1);
(2).
16、(8分)如图,BD,CE是△ABC的高,G,F分别是BC,DE的中点,求证:FG⊥DE.
17、(10分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。
(1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。
18、(10分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.
(1)求证:△AOD≌△BOE;
(2)若DC=DE,判断四边形AEBD的形状,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果a是一元二次方程的一个根,那么代数式=__________.
20、(4分)如图,在中,,将绕顶点顺时针旋转,旋转角为,得到.设中点为,中点为,,连接,当____________时,长度最大,最大值为____________.
21、(4分)气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.
22、(4分)方程的解是_____.
23、(4分)在△ABC中,AB=,AC=5,若 BC 边上的高等于3,则BC边的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0),将△ABC绕原点O顺时针旋转90°得到△A' B' C'.
(1)画出△A’ B’ C’,并直接写出点A的对应点A' 的坐标;
(2)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
25、(10分)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBEF是菱形;为什么.
26、(12分)为了解上一次八年级数学测验成绩情况,随机抽取了40名学生的成绩进行统计分析,这40名学生的成绩数据如下:
55 62 67 53 58 83 87 64 68 85
60 94 81 98 51 83 78 77 66 71
91 72 63 75 88 73 52 71 79 63
74 67 78 61 97 76 72 77 79 71
(1)将样本数据适当分组,制作频数分布表:
(2)根据频数分布表,绘制频数直方图:
(3)从图可以看出,这40名学生的成绩都分布在什么范围内?分数在哪个范围的人数最多?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.
【详解】
解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;
B、∵四边形的内角和为360°,四边形的四个内角都相等,
∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,
∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;
C、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;
D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;
故选:D.
本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.
2、C
【解析】
由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.
【详解】
解:由题意得:(10×14+15×6)÷20=11.5,
故选:C.
此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可.
.
3、B
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
故选B.
考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
4、B
【解析】
直接根据正比例函数的性质和待定系数法求解即可.
【详解】
把x=m,y=4代入y=mx中,
可得:m=±2,
因为y的值随x值的增大而减小,
所以m=-2,
故选B.
本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.
5、B
【解析】
根据一次函数的图象经过一、三、四象限列出b的不等式,求出b及k的取值范围即可.
【详解】
∵一次函数y=kx-(1-b)的图象经过一、三、四象限,
∴k>0,-(1-b)<0,
解得b<1.
故选B.
本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.
6、D
【解析】
根据二次根式有意义的条件解答即可.
【详解】
由题意得3-x≥0,
解得:x≤3,
故选D.
本题考查二次根式有意义的条件,要使二次根式有意义必须满足被开方数大于等于0,熟练掌握二次根式有意义的条件是解题关键.
7、A
【解析】
根据已知条件易证△DEO≌△BFO,可得△DEO和△BFO的面积相等,由此可知阴影部分的面积等于Rt△ADC的面积,继而求得阴影部分面积.
【详解】
∵四边形ABCD是矩形,AB=2,BC=3,
∴AD∥BC,AD=BC=3,AB=CD=2,OB=OD,
∴∠DEO=∠BFO,
在△DEO和△FBO中,
,
∴△DEO≌△BFO,
即△DEO和△BFO的面积相等,
∴阴影部分的面积等于Rt△ADC的面积,
即阴影部分的面积是:
故选A..
本题考查了矩形的性质及全等三角形的判定与性质,证明△DEO≌△BFO,得到阴影部分的面积等于Rt△ADC的面积是解决问题的关键.
8、B
【解析】
根据分式的加减法法则计算即可得出正确选项.
【详解】
解:=.
故选:B.
本题主要考查了分式的加减,同分母分式相加减,分母不变,分子相加减.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.
【详解】
解:由题意得2a+5≥0,解得:.
故答案为.
本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.
10、
【解析】
分式方程去分母转化为整式方程,表示出分式方程的解,确定出m的范围即可.
【详解】
解:,
去分母,得:,
整理得:,
显然,当时,方程无解,
∴;
当时,,
∴,
解得:;
∴的取值范围是:;
故答案为:.
此题考查了分式方程的解,始终注意分母不为0这个条件.
11、90
【解析】
试题分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.
该组数据的平均数=(8×88+4×94)÷(8+4)=90,
则这12名选手的平均成绩是90分.
考点:本题考查的是加权平均数的求法
点评:本题易出现的错误是求88,94这两个数的平均数,对平均数的理解不正确.
12、x≥2
【解析】
根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.
【详解】
解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.
本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.
13、.
【解析】
解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
故答案为.
本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)24,27,27(2)5班学生纠错得分情况比较整齐一些
【解析】
(1)将条形统计图中数据相加再除以10,即可得到样本平均数;找到折线统计图中出现次数最多的数和处于中间位置的数,即为众数和中位数;
(2)计算出两个班的方差,方差越小越整齐.
【详解】
解:(1)八年级(5)班:(21×3+24×4+27×3)=24,
∴a=24,
八年级(6)班得分:21 27 15 27 30 27 18 27 30 18
从小到大排列:15 18 18 21 27 27 27 27 30 30
∴中位数b=27,众数c=27
(2)八年级(5)班的方差:(9×3+0×4+9×3)=5.4,
八年级(6)班的方差:(81+36×3+9+9×4+36×2)=30.6,
∵(5)班的方差小,
∴(5)班学生纠错得分情况比较整齐一些
本题考查了条形统计图,方差、算术平均数、众数和中位数,熟悉各统计量的意义及计算方法是解题的关键.
15、 (1);(2)-31+12.
【解析】
(1)直接化简二次根式进而合并,再利用二次根式除法运算法则计算得出答案;
(2)直接利用乘法公式化简得出答案.
【详解】
解:(1)原式=
(2)原式=3-4-(12+18-12)
=3-4-30+12
=-31+12.
此题主要考查了二次根式的混合运算,正确化简各数是解题关键.
16、如图,连接EG,DG.
∵CE是AB边上的高,
∴CE⊥AB.
在Rt△CEB中,G是BC的中点,∴.
同理,.∴EG=DG.
又∵F是ED的中点,∴FG⊥DE.
【解析】
根据题意连接EG,DG,利用直角三角形斜边上的中线的性质可得EG=DG,然后根据等腰三角形“三线合一”的性质即可解决.
17、(1)见解析;(2)周长为:11.
【解析】
(1)根据三角形的中位线的定理和平行四边形的判定即可解答;
(2)利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.
【详解】
(1)证明:∵点E,F 分别是AB,AC 的中点,
∴EF 是△ABC 的中位线,∴EF∥BC 且EF=BC;
又∵点H,G 分别是BD,CD 的中点,∴HG 是△BCD 的中位线,∴HG∥BC
且HG=BC;
∴EF∥HG 且EF=HG,∴四边形EFGH 是平行四边形.
(2)∵点E,H 分别是AB,BD 的中点,∴EH 是△ABD 的中位线,∴EH=AD=3;
∵∠BDC=90°,∴△BCD 是直角三角形;
在Rt△BCD 中,CD=3,BD=4,∴由勾股定理得:BC=5;
∵HG=BC,∴HG=;
由(1)知,四边形EFGH 是平行四边形,∴周长为2EH+2HG=11.
本题考查了三角形中位线定理, 勾股定理,掌握三角形中位线定理, 勾股定理是解决问题的关键.
18、(1)证明见解析;(2)四边形AEBD是矩形.
【解析】
(1)利用平行线得到∠ADO=∠BEO,再利用对顶角相等和线段中点,可证明△AOD≌△BOE;
(2)先证明四边形AEBD是平行四边形,再利用对角线相等的平行四边形的矩形,可判定四边形AEBD是矩形.
【详解】
(1)∵四边形ABCD是平行四边形,∴AD∥CE,∴∠ADO=∠BEO.
∵O是BC中点,∴AO=BO.
又∵∠AOD=∠BOE,∴△AOD≌△BOE(AAS);
(2)四边形AEBD是矩形,理由如下:
∵△AOD≌△BOE,∴DO=EO.
又AO=BO,∴四边形AEBD是平行四边形.
∵DC=DE=AB,∴四边形AEBD是矩形.
本题考查了平行四边形的性质、全等三角形的判定和性质、矩形的判定和性质,解决这类问题往往是把四边形问题转化为三角形问题解决.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据一元二次方程的解的定义得到a2-1a=5,再把8-a2+1a变形为8-(a2-1a),然后利用整体代入的方法计算即可.
【详解】
解:把x=a代入x2-1x-5=0得a2-1a-5=0,
所以a2-1a=5,
所以8-a2+1a=8-(a2-1a)=8-5=1.
故答案为:1.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
20、 3
【解析】
连接CP,当点E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.
【详解】
∵,,
∴AB=4,∠A=60°,
由旋转得=∠A=60°,=AB=4,
∵中点为,
∴=2,
∴△是等边三角形,
∴∠=60°,
如图,连接CP,当旋转到点E、C、P三点共线时,EP最长,此时,
∵点E是AC的中点,,
∴CE=1,
∴EP=CE+PC=3,
故答案为: 120,3.
此题考查直角三角形的性质,等边三角形的判定及性质,旋转的性质,解题中首先确定解题思路,根据旋转得到EP的最大值即是CE+PC在进行求值,确定思路是解题的关键.
21、y=x+1.
【解析】
直接利用原高度+上升的时间×1=海拔高度,进而得出答案.
【详解】
气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.
故答案为:y=x+1.
此题主要考查了函数关系式,正确表示出上升的高度是解题关键.
22、x=﹣1.
【解析】
把方程两边平方后求解,注意检验.
【详解】
把方程两边平方得x+2=x2,
整理得(x﹣2)(x+1)=0,
解得:x=2或﹣1,
经检验,x=﹣1是原方程的解.
故本题答案为:x=﹣1.
本题考查无理方程的求法,注意无理方程需验根.
23、6或1
【解析】
△ABC中,∠ACB分锐角和钝角两种:
①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;
②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD-CD代入可得结论.
【详解】
解:有两种情况:
①如图1,∵AD是△ABC的高,
∴∠ADB=∠ADC=90°,
由勾股定理得:BD==1,
CD==4,
∴BC=BD+CD=5+1=6;
②如图2同理得:CD=4,BD=1,
∴BC=BD-CD=4-1=1,
综上所述,BC的长为6或1;
故答案为6或1.
本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.
二、解答题(本大题共3个小题,共30分)
24、(1)画图见解析;(2),或.
【解析】
试题分析:(1)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°对应点A′、B′、C′的位置,然后顺次连接即可;
(2)根据平行四边形的对边平行且相等,分AB、BC、AC是对角线三种情况分别写出即可.
试题解析:(1)如图所示△DEF为所求;
(2)若AB是对角线,则点D(-7,3),
若BC是对角线,则点D(-5,-3),
若AC是对角线,则点D(3,3),
故答案为或或 .
25、(1)证明见解析;(2)当AB=BC时,四边形DBEF是菱形,理由见解析.
【解析】
(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明.
(2)根据邻边相等的平行四边形是菱形证明.
【详解】
解:(1)∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线.
∴DE∥BC.
又∵EF∥AB,
∴四边形DBFE是平行四边形.
(2)当AB=BC时,四边形DBEF是菱形.
理由如下:
∵D是AB的中点,
∴BD= AB.
∵DE是△ABC的中位线,
∴DE= BC.
∵AB=BC,
∴BD=DE.
又∵四边形DBFE是平行四边形,
∴四边形DBFE是菱形.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.
26、答案见解析
【解析】
试题分析:(1)根据题意制作频数分布表即可;
(2)根据题意绘制频数直方图即可;
(3)根据题意即可得到结论.
试题解析:
(1)将样本数据适当分组,制作频数分布表:
故答案为:[50,59],[60,69],[70,79],[80,89],[90,100],5,10,15,6,4;
(2)根据频数分布表,绘制频数直方图:
(3)从图可以看出,这40名学生的成绩都分布在50∽100分范围内,分数在70﹣80之间的人数最多.
题号
一
二
三
四
五
总分
得分
班级
平均分(分)
中位数(分)
众数(分)
八年级(5)班
a
24
24
八年级(6)班
24
b
c
分 组
频 数
分 组
[50,59]
[60,69]
[70,79]
[80,89]
[90,100]
频 数
5
10
15
6
4
相关试卷
这是一份2024-2025学年山东省淄博周村区五校联考九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省武城县联考数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省滕州市数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。