|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年陕西省榆林市横山区第二中学九年级数学第一学期开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年陕西省榆林市横山区第二中学九年级数学第一学期开学达标检测模拟试题【含答案】01
    2024-2025学年陕西省榆林市横山区第二中学九年级数学第一学期开学达标检测模拟试题【含答案】02
    2024-2025学年陕西省榆林市横山区第二中学九年级数学第一学期开学达标检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年陕西省榆林市横山区第二中学九年级数学第一学期开学达标检测模拟试题【含答案】

    展开
    这是一份2024-2025学年陕西省榆林市横山区第二中学九年级数学第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是( )
    A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)
    2、(4分)利用一次函数y=kx+b(k≠0)的图象解关于x的不等式kx+b≤0,若它的解集是x≥﹣2,则一次函数y=kx+b的图象为( )
    A.B.
    C.D.
    3、(4分)在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的,则该矩形发生的变化为( )
    A.向左平移了个单位长度B.向下平移了个单位长度
    C.横向压缩为原来的一半D.纵向压缩为原来的一半
    4、(4分)函数y=的自变量的取值范围是( )
    A.x≥2B.x<2C.x>2D.x≤2
    5、(4分)如图,矩形中,对角线、交于点.若,,则的长为( )
    A.6B.5C.4D.3
    6、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是( )L.
    A.5B.3.75C.4D.2.5
    7、(4分)将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是( )
    A.(1,1)B.(-1,3)C.(5,1)D.(5,3)
    8、(4分)如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为( )
    A.B.5C.7D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).
    10、(4分)如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.
    11、(4分)如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.
    12、(4分)已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是____.
    13、(4分)观察下列按顺序排列的等式:,试猜想第n个等式(n为正整数):an=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=10t﹣5t1.
    (1)经多少秒后足球回到地面?
    (1)试问足球的高度能否达到15米?请说明理由.
    15、(8分)在平面直角坐标系xOy中,对于点,若点Q的坐标为,其中a为常数,则称点Q是点P的“a级关联点”例如,点的“3级关联点”为,即.
    已知点的“级关联点”是点,点B的“2级关联点”是,求点和点B的坐标;
    已知点的“级关联点”位于y轴上,求的坐标;
    已知点,,点和它的“n级关联点”都位于线段CD上,请直接写出n的取值范围.
    16、(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
    (1)求y关于x的函数关系式;(不需要写定义域)
    (2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
    17、(10分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.
    (1)如图1,点A、D分别在EH和EF上,连接BH、AF,BH和AF有何数量关系,并说明理由;
    (2)将正方形EFGH绕点E顺时针方向旋转,如图2,判断BH和AF的数量关系,并说明理由.
    18、(10分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.
    (1)当t为何值时,四边形ABQP是矩形;
    (2)当t为何值时,四边形AQCP是菱形;
    (3)分别求出(2)中菱形AQCP的周长和面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若分式在实数范围内有意义,则x的取值范围是_____.
    20、(4分)关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是_____.
    21、(4分)与最简二次根式是同类二次根式,则__________.
    22、(4分)如图,在直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,1),点B落在点B1,则点B1的坐标为_______.
    23、(4分)如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.
    (1)求证:四边形AFCE是平行四边形;
    (2)若,°,.
    ①直接写出的边BC上的高h的值;
    ②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是
    A.平行四边形→矩形→平行四边形→菱形→平行四边形
    B.平行四边形→矩形→平行四边形→正方形→平行四边形
    C.平行四边形→菱形→平行四边形→菱形→平行四边形
    D.平行四边形→菱形→平行四边形→矩形→平行四边形
    25、(10分)在矩形ABCD中,点E、F分别在AB,BC上,△DEF为等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的长.
    26、(12分)用适当的方法解下列方程:(2x-1)(x+3)=1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标.
    【详解】
    令,则,
    解得,
    故此直线与轴的交点的坐标为;
    令,则,
    故此直线与轴的交点的坐标为.
    故选:.
    本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.
    2、C
    【解析】
    找到当x≥﹣2函数图象位于x轴的下方的图象即可.
    【详解】
    ∵不等式kx+b≤0的解集是x≥﹣2,
    ∴x≥﹣2时,y=kx+b的图象位于x轴的下方,C选项符合,
    故选:C.
    本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.
    3、C
    【解析】
    ∵平面直角坐标系中,一个正方形上的各点的坐标中,纵坐标保持不变,
    ∴该正方形在纵向上没有变化.
    又∵平面直角坐标系中,一个正方形上的各点的坐标中,横坐标变为原来的,
    ∴此正方形横向缩短为原来的,即正方形横向缩短为原来的一半.
    故选C.
    4、A
    【解析】
    根据被开方数大于等于0列不等式求解即可.
    【详解】
    由题意得:x﹣1≥0,解得:x≥1.
    故选A.
    本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    5、B
    【解析】
    由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴OA=OC=OB=OD=AC=1,∠ABC=90°,
    ∴∠OBC=∠ACB=30°
    ∵∠AOB=∠OBC+∠ACB
    ∴∠AOB=60°
    ∵OA=OB
    ∴△AOB是等边三角形
    ∴AB=OA=1
    故选:B
    本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.
    6、B
    【解析】
    观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.
    【详解】
    每分钟的进水量为:20÷4=5(升),
    每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).
    故选B.
    本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.
    7、B
    【解析】
    根据平移的方法:横坐标,右移加,左移减;纵坐标,上移加,下移减,即可得结论.
    【详解】
    解:将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(-1,3).
    故选:B.
    本题考查了坐标与图形变化-平移,解决本题的关键是,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
    8、A
    【解析】
    根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是1,得出BC的值,再利用勾股定理即可解答.
    【详解】
    由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,
    曲线开始AK=a,结束时AK=a,所以AB=AC.
    当AK⊥BC时,在曲线部分AK最小为1.
    所以 BC×1=1,解得BC=2.
    所以AB=.
    故选:A.
    此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、>
    【解析】
    分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
    【详解】
    ∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,
    ∴y1=-3,y1=-6,
    ∵-3>-6,
    ∴y1>y1.
    10、
    【解析】
    连接,取的中点,连,,由中位线性质得到,,,,设,由勾股定理得方程,求解后进一步可得MN的值.
    【详解】
    解:连接,取的中点,连,,
    则,,,
    ∵,为中点
    ∴,
    ∵BD平分,
    ∴BE=EG
    设,
    则,
    ∴在中,

    解得(舍),
    ∴,,
    ∴.
    本题考查了正方形和直角三角形的性质,添加辅助线后运用中位线性质和方程思想解决问题是解题的关键.
    11、 (2,3)
    【解析】
    作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
    【详解】
    如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,
    ∵点A、B的坐标分别为(-2,1)、(1,0),
    ∴AC=2,BC=2+1=3,
    ∵∠ABA′=90°,
    ∴ABC+∠A′BC′=90°,
    ∵∠BAC+∠ABC=90°,
    ∴∠BAC=∠A′BC′,
    ∵BA=BA′,∠ACB=∠BC′A′,
    ∴△ABC≌△BA′C′,
    ∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
    ∴点A′的坐标为(2,3).
    故答案为(2,3).
    此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.
    12、k<-5
    【解析】
    根据当k<0时, y随x的增大而减小解答即可.
    【详解】
    由题意得
    k+5<0,
    ∴k<-5.
    故答案为:k<-5.
    本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时, y=kx的图象经过二、四象限,y随x的增大而减小.
    13、.
    【解析】
    根据题意可知,
    ∴.
    三、解答题(本大题共5个小题,共48分)
    14、(1)4;(1)不能.
    【解析】
    求出时t的值即可得;
    将函数解析式配方成顶点式,由顶点式得出足球高度的最大值即可作出判断.
    【详解】
    (1)当h=0时,10t﹣5t1=0,解得:t=0或t=4,
    答:经4秒后足球回到地面;
    (1)不能,理由如下:
    ∵h=10t﹣5t1=﹣5(t﹣1)1+10,
    ∴由﹣5<0知,当t=1时,h的最大值为10,不能达到15米,
    故足球的高度不能达到15米.
    本题考查了二次函数的应用,解题的关键是熟练掌握二次函数的性质及将实际问题转化为二次函数问题的能力.
    15、(1),;(2);(3).
    【解析】
    (1)根据关联点的定义,结合点的坐标即可得出结论.
    (2)根据关联点的定义和点M(m-1,2m)的“-3级关联点”M'位于y轴上,即可求出M'的坐标.
    (3)因为点C(-1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N'都位于线段CD上,可得到方程组,解答即可.
    【详解】
    解:点的“级关联点”是点,

    即.
    设点,
    点B的“2级关联点”是,

    解得

    点的“级关联点”为,
    位于y轴上,

    解得:


    点和它的“n级关联点”都位于线段CD上,




    解得:.
    本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,正确理解题意,灵活运用所学知识解决问题是解题的关键.
    16、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【解析】
    【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
    (2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
    【详解】(1)设该一次函数解析式为y=kx+b,
    将(150,45)、(0,1)代入y=kx+b中,得
    ,解得:,
    ∴该一次函数解析式为y=﹣x+1;
    (2)当y=﹣x+1=8时,
    解得x=520,
    即行驶520千米时,油箱中的剩余油量为8升.
    530﹣520=10千米,
    油箱中的剩余油量为8升时,距离加油站10千米,
    ∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
    17、(1)BH=AF,见解析;(2)BH=AF,见解析.
    【解析】
    (1)根据正方形的性质可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;
    (2)根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形的性质即可得到结论.
    【详解】
    (1)BH=AF,理由如下:
    在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,
    ∵四边形EFGH是正方形,
    ∴EF=EH,
    在△BEH和△AEF中,

    ∴△BEH≌△AEF(SAS),
    ∴BH=AF;
    (2)BH=AF,理由如下:
    ∵四边形ABCD是正方形,
    ∴AE=BE,∠BEA=90°,
    ∵四边形EFGH是正方形,
    ∴EF=EH,∠HEF=90°,
    ∴∠BEA+∠AEH=∠HEF+∠AEH,
    即∠BEH=∠AEF,
    在△BEH与△AEF中,

    ∴△BEH≌△AEF(SAS),
    ∴BH=AF.
    本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,准确找到全等三角形是解题的关键.
    18、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).
    【解析】
    (1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;
    (2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;
    (3)菱形的四条边相等,则菱形的周长=4AQ,面积=CQ×AB.
    【详解】
    解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t
    在矩形ABCD中,∠B=90°,AD∥BC,
    当BQ=AP时,四边形ABQP为矩形,
    ∴t=6-t,得t=3
    故当t=3s时,四边形ABQP为矩形.
    (2)AD∥BC,AP=CQ=6-t,
    ∴四边形AQCP为平行四边形
    ∴当AQ=CQ时,四边形AQCP为菱形
    即=6−t时,四边形AQCP为菱形,解得t=,
    故当t=s时,四边形AQCP为菱形.
    (3)当t=时,AQ=,CQ=,
    则周长为:4AQ=4×=15cm
    面积为:CQ•AB=×3=.
    本题考查菱形、矩形的判定与性质.注意结合方程的思想解题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x≠1
    【解析】
    分式有意义的条件是分母不等于零.
    【详解】
    ∵分式在实数范围内有意义,
    ∴x−1≠0,
    解得:x≠1.
    故答案为:x≠1.
    此题考查分式有意义的条件,解题关键在于分母不等于零使得分式有意义.
    20、a<1且a≠1
    【解析】
    由关于x的一元二次方程ax2+2x+1=1有两个不相等的实数根,即可得判别式△>1,继而可求得a的范围.
    【详解】
    ∵关于x的一元二次方程ax2+2x+1=1有两个不相等的实数根,
    ∴△=b2﹣4ac=22﹣4×a×1=4﹣4a>1,
    解得:a<1,
    ∵方程ax2+2x+1=1是一元二次方程,
    ∴a≠1,
    ∴a的范围是:a<1且a≠1.
    故答案为:a<1且a≠1.
    此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>1.
    21、1
    【解析】
    先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.
    【详解】
    解:∵,
    ∴m+1=2,
    ∴m=1.
    故答案为1.
    本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.
    22、(1,3)
    【解析】
    先确定点A到点A1的平移方式,然后根据平移方式即可确定点B平移后的点B1的坐标.
    【详解】
    ∵点A(-3,-1)落在A1(0,1)是点A向右移动3个单位,向上移动2个单位.
    ∴点B(-2,1) 向右移动3个单位,向上移动2个单位后的点坐标B1为(1,3).
    故答案为:(1,3).
    本题考查坐标与图形变化——平移.能理解A与A1,B与B1分别是平移前后图形上的两组对应点,它们的平移方式相同是解决此题的关键.
    23、.
    【解析】
    先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.
    【详解】
    设△ABC的高为h,
    ∵S△ABC=BC•h=3h=,
    ∴h=.
    ∵ ,
    ∴点A的横坐标为 .
    设点C(3,m),则点A(,m+),
    ∵点A、C在反比例函数y=(k>0,x>0)的图象上,
    则k=3m=(m+),
    解得 ,
    则k=3m=,
    故答案为:.
    本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)①;②D
    【解析】
    (1)由四边形ABCD是平行四边形可得AD∥BC,AO=CO,根据“AAS”证明△AOE≌△COF,可得OE=OF,从而可证四边形AFCE是平行四边形;
    (2)①作AH⊥BC于点H,根据锐角三角函数的知识即可求出AH的值;
    ②根据图形结合平行四边形、矩形、菱形的判定逐个阶段进行判断即可.
    【详解】
    (1)证明:在中,对角线AC,BD相交于点O.
    ∴,.
    ∴,.
    ∴.
    ∴.
    ∵,,
    ∴四边形AFCE是平行四边形.
    (2)①作AH⊥BC于点H,
    ∵AD∥BC,∠DAC=60°,
    ∴∠ACF=∠DAC=60°,
    ∴AH=AC·sin∠ACF=,
    ∴BC上的高h=;
    ②在整个运动过程中,OA=OC,OE=OF,
    ∴四边形AFCE恒为平行四边形,
    E点开始运动时,随着它的运动,∠FAC逐渐减小,
    当∠FAC=∠EAC=60°时,即AC为∠FAE的角平分线,
    ∵四边形AFCE恒为平行四边形,
    ∴四边形AFCE为菱形,
    当∠FAC+∠EAC=90°时,即∠FAC=30°,
    此时AF⊥FC,
    ∴此时四边形AFCE为矩形,
    综上,在点E从点D向点A运动过程中,四边形AFCE先后为平行四边形、菱形、平行四边形、矩形、平行四边形.
    故选D.
    本题考查了平行四边形的性质与判定、矩形的判定、菱形的判定及正方形的判定,及锐角三角函数的知识,主要考查学生的理解能力和推理能力,题目比较好,难度适中.
    25、AD=2.
    【解析】试题分析:先设AD=x.由△DEF为等腰直角三角形,可以得到一对边相等,一对角相等,再加上一对直角相等,那么△ADE和△BEF全等,就有AD=BE.那么利用边相等可得x+x+2=1,解之即得AD.
    解:先设AD=x.
    ∵△DEF为等腰三角形.
    ∴DE=EF,∠FEB+∠DEA=90°.
    又∵∠AED+∠ADE=90°.
    ∴∠FEB=∠EDA.
    又∵四边形ABCD是矩形,
    ∴∠B=∠A=90°
    ∴△ADE≌△BEF(AAS).
    ∴AD=BE.
    ∴AD+CD=AD+AB=x+x+2=1.
    解得x=2.
    即AD=2.
    考点:矩形的性质;全等三角形的判定与性质;等腰直角三角形.
    26、x2=-,x2=2.
    【解析】
    先把方程化为一般式,然后利用因式分解法解方程.
    【详解】
    解:2x2+5x-7=0,
    (2x+7)(x-2)=0,
    2x+7=0或x-2=0,
    所以x2=,x2=2.
    本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年陕西省延安市区实验中学九年级数学第一学期开学复习检测模拟试题【含答案】: 这是一份2024-2025学年陕西省延安市区实验中学九年级数学第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省兴平市西郊高级中学九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年陕西省兴平市西郊高级中学九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省西安工业大附属中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年陕西省西安工业大附属中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map