2024-2025学年沈阳市铁西区数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知AB=DC,下列所给的条件不能证明△ABC≌△DCB的是( )
A.∠A=∠D=90°B.∠ABC=∠DCBC.∠ACB=∠DBCD.AC=BD
2、(4分)一个菱形的周长是20,一条对角线长为6,则菱形的另一条对角线长为( )
A.4B.5C.8D.10
3、(4分)窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计.下列表示我国古代窗棂样式结构图案中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
4、(4分)如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为
( )
A.280B.140C.70D.196
5、(4分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若∠B=50°,则∠AFE的度数为( )
A.50°B.60°C.65°D.70°
6、(4分)下列式子正确的是( )
A.若,则x<yB.若bx>by,则x>y
C.若,则x=yD.若mx=my,则x=y
7、(4分)一组数据2,3,5,5,4的众数、中位数分别是( )
A.5,4B.5,5C.5,4.5D.5,3.8
8、(4分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
A.,B.,
C.,D.,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD 的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.
10、(4分)如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.
11、(4分)已知反比例函数,当时,y的取值范围是________.
12、(4分)我国古代数学领域有些研究成果曾位居世界前列,其中“杨辉三角”就是一例.南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用图中的三角形解释二项和的乘方规律.杨辉三角两腰上的数都是1,其余每个数都为它的上方(左右)两数之和,这个三角形给出了(a+b)n(n=1,2,3,4,5)的展开式(按a的次数由大到小的顺序)的系数规律.例如,此三角形中第3行的3个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数:第4行的4个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中各项的系数,等等.利用上面呈现的规律填空:(a+b)6=a6+6a5b+________ +20a3b3+15a2b4+ ________+b6
13、(4分)如果点P(m+3,m+1)在x轴上,则点P的坐标为________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,平面直角坐标系中,点A(−6 ,0),点B(0,18),∠BAO=60°,射线AC平分∠BAO交y轴正半轴于点C.
(1)求点C的坐标;
(2)点N从点A以每秒2个单位的速度沿线段AC向终点C运动,过点N作x轴的垂线,分别交线段AB于点M,交线段AO于点P,设线段MP的长度为d,点P的运动时间为t,请求出d与t的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,将△ABO沿y轴翻折,点A落在x轴正半轴上的点E,线段BE交射线AC于点D,点Q为线段OB上的动点,当△AMN与△OQD全等时,求出t值并直接写出此时点Q的坐标.
15、(8分)甲骑自行年,乙乘坐汽车从A地出发沿同一路线匀速前往B地,甲先出发.设甲行驶的时间为x(h),甲、乙两人距出发点的路程S甲(km)、S乙(km)关于x的函数图象如图1所示,甲、乙两人之同的距离y(km)关于x的函数图象如图2所示,请你解决以下问题:
(1)甲的速度是__________km/h,乙的速度是_______km/h;
(2)a=_______,b=_______;
(3)甲出发多少时间后,甲、乙两人第二次相距7.5km?
16、(8分)如图,在中,,,是的垂直平分线.
(1)求证:是等腰三角形.
(2)若的周长是,,求的周长.(用含,的代数式表示)
17、(10分)如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.
18、(10分)某商场进行促销,购物满额即可获得次抽奖机会,抽奖袋中装有红色、黄色、白色三种除颜色外都相同的小球,从袋子中摸出个球,红色、黄色、白色分别代表一、二、三等奖.
(1)若小明获得次抽奖机会,小明中奖是 事件.(填随机、必然、不可能)
(2)小明观察一段时间后发现,平均每个人中会有人抽中一等奖,人抽中二等奖,若袋中共有个球,请你估算袋中白球的数量;
(3)在(2)的条件下,如果在抽奖袋中增加三个黄球,那么抽中一等奖的概率会怎样变化?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)花粉的质量很小.一粒某种植物花粉的质量约为0.000 037毫克,那么0.000 037毫克可用科学记数法表示为________毫克.
20、(4分)如图,在菱形ABCD 中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是_________.
21、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
22、(4分)请写出一个图象经过点的一次函数的表达式:______.
23、(4分)若是整数,则最小的正整数a的值是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
25、(10分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2求斜边AB的长.
26、(12分)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天;
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:AB=DC,BC为△ABC和△DCB的公共边,
A、∠A=∠D=90°满足“HL”,能证明△ABC≌△DCB;
B、∠ABC=∠DCB满足“边角边”,能证明△ABC≌△DCB;
C、∠ACB=∠DBC满足“边边角”,不能证明△ABC≌△DCB;
D、AC=BD满足“边边边”,能证明△ABC≌△DCB.
故选C.
2、C
【解析】
首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.
【详解】
如图,∵菱形ABCD的周长为20,对角线AC=6,
∴AB=5,AC⊥BD,OA=AC=3,
∴OB==4,
∴BD=2OB=1,
即菱形的另一条对角线长为1.
故选:C.
此题考查菱形的性质以及勾股定理.解题关键在于注意菱形的对角线互相平分且垂直.
3、A
【解析】
将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.
【详解】
A、是轴对称图形,是中心对称图形;
B、是轴对称图形,不是中心对称图形;
C、不是轴对称图形,是中心对称图形;
D、不是轴对称图形,不是中心对称图形,
故选:A.
此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.
4、C
【解析】
解:设小长方形的长、宽分别为x、y,
依题意得:,
解得:,
则矩形ABCD的面积为7×2×5=1.
故选C.
【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.
5、C
【解析】
由菱形的性质和等腰三角形的性质可得∠BCA=∠BAC=65°,由三角形中位线定理可得EF∥BC,即可求解.
【详解】
解:∵四边形ABCD是菱形
∴AB=BC,且∠B=50°
∴∠BCA=∠BAC=65°
∵E,F分别是AB,AC的中点,
∴EF∥BC
∴∠AFE=∠BCA=65°
故选:C.
本题考查了菱形的性质,等腰三角形的性质,以及三角形中位线的判定与性质,熟练掌握菱形的性质是本题的关键.
6、C
【解析】
A选项错误,,若a>0,则x<y;若a<0,则x>y;
B选项错误,bx>by,若b>0,则x>y;若b<0,则x<y;
C选项正确;
D选项错误,当m=0时,x可能不等于y.
故选C.
点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.
7、A
【解析】
根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大重新排列后,最中间的那个数即可求出答案.
【详解】
数据2,3,5,5,4中,
5出现了2次,出现的次数最多,
则众数是5;
按大小顺序排列为5,5,4,3,2,最中间的数是4,
则中位数是4;
故选A.
此题考查了众数和中位数,掌握众数和中位数的定义是解题的关键,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
8、B
【解析】
根据平行四边形的判定方法,对每个选项进行筛选可得答案.
【详解】
A、∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,故A选项不符合题意;
B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;
C、∵AD//BC,AD=BC,
∴四边形ABCD是平行四边形,故C选项不符合题意;
D、∵AB∥CD,
∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,
又∵∠BAD=∠BCD,
∴∠ABC=∠ADC,
∵∠BAD=∠BCD,∠ABC=∠ADC,
∴四边形ABCD是平行四边形,故D选项不符合题意,
故选B.
本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由30°角直角三角形的性质求得,然后根据矩形的两条对角线相等且平分来求的长度.
【详解】
解:在矩形中,对角线,的交点为,
,,.
又∵点为边的中点,
,
,,
,
,
.
故答案为:1.
本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出的长是解此题的关键.题型较好,难度适中.
10、10
【解析】
从A点做底边BC的垂线AE,在三角形ABE中30度角所对的直角边等于斜边AB的一半,所以AE=2,同时AE也是平行四边形ABCD的高,所以平行四边形的面积等于5x2=10.
【详解】
作AE⊥BC,
因为
所以,AE=AB=×4 =2.
所以,平行四边形的面积=BC×AE=5x2=10.
故答案为10
本题考核知识点:直角三角形. 解题关键点:熟记含有30〬角的直角三角形的性质.
11、
【解析】
利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.
【详解】
∵k=1>0,
∴在每个象限内y随x的增大而减小,
又∵当x=1时,y=1,
当x=2时,y=5,
∴当1<x<2时,5<y<1.
故答案为.
本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.
12、15a4b2 6ab5
【解析】
杨辉三角两腰上的数都是1,其余每个数都为它的上方(左右)两数之和,所以由第六行的数字可以得出第七行的数, 结合a的次数由大到小的顺序逐项写出展开式即可.
【详解】
∵第六行6个数1,5,10,10,5,1,则第七行7个数为1,6,15,20,15,6,1;
则 (a+b)7=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab6+b7;
此题主要考查代数式的规律,解题的关键是根据题意找到规律.
13、(2,0)
【解析】
根据x轴上点的坐标特点解答即可.
【详解】
解:∵点P(m+3,m+1)在直角坐标系的x轴上,
∴点P的纵坐标是0,
∴m+1=0,解得,m=-1,
∴m+3=2,则点P的坐标是(2,0).
故答案为(2,0).
三、解答题(本大题共5个小题,共48分)
14、 (1)(0,6);(2 )d=3t(0
【解析】
(1)首先证明∠BAO=60°,在Rt△ACO中,求出OC的长即可解决问题;
(2)理由待定系数法求出直线AB的解析式,再求出点P的坐标即可解决问题;
(3)由(1)可知,∠NAM=∠NMA=30°,推出△AMN是等腰三角形,由当△AMN与△OQD全等,∠DOC=30°,①当∠QDO=30°时,△AMN与△OQD全等,
此时点Q与C重合,当AN=OC时,△ANM≌△OQC,②当∠OQD=30°,△AMN与△OQD全等,此时点Q与B重合,OD=AN=6,分别求出t的值即可;
【详解】
(1)在Rt△AOB中,∵OA=6,OB=18,
∴tan∠BAO= =,
∴∠BAO=60°,
∵AC平分∠BAO,
∴∠CAO= ∠BAO=30°,
∴OC=OA⋅tan30°=6⋅ =6,
∴C(0,6).
(2)如图1中,设直线AB的解析式为y=kx+b,
则有 ,
∴ ,
∴直线AB的解析式为y=x+18,
∵AN=2t,
∴AM=t,
∴OM=6−t,
∴M(t−6,0),
∴点P的纵坐标为y= (t−6)+18=3t,
∴P(t−6,3t),
∴d=3t(0
由(1)可知,∠NAM=∠NMA=30°,
∴△AMN是等腰三角形,
∵当△AMN与△OQD全等,∠DOC=30°,
∴①当∠QDO=30°时,△AMN与△OQD全等,
此时点Q 与C重合,当AN=OC时,△ANM≌△OQC,
∴2t=6,
t=3,此时Q(0,6).
②当∠OQ D=30°,△AMN与△OQD全等,此时点Q与B重合,OD=AN=6,
∴2t=6,
∴t=3,此时Q(0,18).
此题考查几何变换综合题,解题关键在于作辅助线
15、 (1)甲的速度是10km/h,乙的速度是25km/h ;(2),;(3)
【解析】
(1)根据函数图象中的数据,由路程除以时间可求得甲乙的速度;
(2)根据a、b点的实际意义列出方程求解即可;
(3)由图象可知甲乙相距7.5km有两种情况,第二次相距7.5km时,汽车在自行车的前面,据此列出方程即可解答本题.
【详解】
(1)甲的速度为:25÷2.5=10km/h,乙的速度是25÷(2-1)=25÷1=25km/h;
故答案为:10,25;
(2)由题意得:25(a-1)=10a
解得;
由题意可知,当汽车到达B地时,两人相距bkm.
∴b=25-10×2=5
故答案为:,
(3)甲、乙两人第二次相距7.5km是在甲乙相遇之后,汽车在自行车的前面,设甲出发xh,甲、乙两人第二次相距7.5km,
由题意可得:25(x-1)-10x=7.5,
解得:.
答:甲出发后,甲乙两人第二次相距7.5km.
本题考查一次函数的应用,解答本题的关键是明确题意,准确识别函数图像并利用方程思想解答.
16、(1)详见解析;(2)a+b
【解析】
(1)首先由等腰三角形ABC得出∠B,然后由线段垂直平分线的性质得出∠CDB,即可判定;
(2)由等腰三角形BCD,得出AB,然后即可得出其周长.
【详解】
(1)∵,
∴
∵是的垂直平分线
∴
∴
∵是的外角
∴
∴
∴
∴是等腰三角形;
(2)∵,的周长是
∴
∵
∴
∴的周长.
此题主要考查线段垂直平分线的性质以及等腰三角形的判定与性质,熟练掌握,即可解题.
17、答案见解析
【解析】
首先连接AC交EF于点O,由平行四边形ABCD的性质,可知OA=OC,OB=OD,又因为BE=DF,可得OE=OF,即可判定AECF是平行四边形.
【详解】
证明:连接AC交EF于点O;
∵平行四边形ABCD
∴OA=OC,OB=OD
∵BE=DF,
∴OE=OF
∴四边形AECF是平行四边形.
此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题.
18、 (1)必然;(2)9;(3)减小,理由见解析.
【解析】
(1)由于购物满额就有抽奖机会,而且袋子中的小球都有奖项,据此可知小明中奖是必然事件;
(2)根据中奖的数据可知平均每6个人中会有3人中三等奖,据此即可估算出白球的数量;
(3)根据袋子中球的数量增加了,而红球数不变,可知概率减小了.
【详解】
解:(1)因为有抽奖机会就会中奖,因此小明中奖是必然事件,
故答案为必然;
(2)18×=18×=9,
答:估算袋中有9个白球;
(3)减小,因为红色球的数量不变,但是袋子中球的总数增加了.
本题考查了随机事件与必然事件,简单的概率应用,弄清题意是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.000037毫克可用科学记数法表示为3.7×10-5毫克.
故答案为:.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
20、1
【解析】
根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,AB=BC=CD=AD,
∵点P是AB的中点,
∴AB=2OP,
∵PO=2,
∴AB=4,
∴菱形ABCD的周长是:4×4=1,
故答案为:1.
此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.
21、x<﹣2
【解析】
根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
【详解】
解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
∴一次函数图象经过第二、三、四象限,
∴当x<-2时,y>1,即ax+b>1,
∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
22、y=2x-1
【解析】
可设这个一次函数解析式为:,把代入即可.
【详解】
设这个一次函数解析式为:,
把代入得,
这个一次函数解析式为:不唯一.
一次函数的解析式有k,b两个未知数当只告诉一个点时,可设k,b中有一个已知数,然后把点的坐标代入即可.
23、1.
【解析】
由于41a=1×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a为1.
【详解】
解: 41a=1×3×3×a,
若为整数,则必能被开方,所以满足条件的最小正整数a为1.
故答案为:1.
本题考查二次根式的化简.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)根据角平分线的作图方法作图即可;
(2)由题意易证△ADE≌△CBF推出DE=BF.
【详解】
(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.
(2)证明如下:∵AD∥BC,∴∠DAC=∠C.
∵BF平分∠ABC,∴∠ABC=2∠FBC,
又∵∠ABC=2∠ADG,∴∠D=∠FBC,
在△ADE与△CBF中,,
∴△ADE≌△CBF(ASA),
∴DE=BF.
本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.
25、.
【解析】
设BC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.
【详解】
∵在Rt△ABC中,∠C=90°,∠A=30°,AC=2,
∴设BC=x,则AB=2x,
∵AC2+BC2=AB2,即22+x2=(2x)2,
解得x=,
∴AB=2x=.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
26、(1)甲队单独完成此项工程需15天,乙队单独完成此项工程需10天;(2)甲队所得报酬8000元,乙队所得报酬12000元.
【解析】
(1)求工效,时间明显,一定是根据工作总量来列等量关系的.等量关系为:甲6天的工作总量+乙6天的工作总量=1;
(2)让20000×各自的工作量即可.
【详解】
解:(1)设甲队单独完成此项工程需x天,
由题意得
解之得x=15
经检验,x=15是原方程的解.
答:甲队单独完成此项工程需15天,
乙队单独完成此项工程需15×=10(天)
(2)甲队所得报酬:20000××6=8000(元)
乙队所得报酬:20000××6=12000(元)
本题主要考查了分式方程的应用.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年山东省聊城市冠县九上数学开学预测试题【含答案】: 这是一份2024-2025学年山东省聊城市冠县九上数学开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省常熟市九上数学开学预测试题【含答案】: 这是一份2024-2025学年江苏省常熟市九上数学开学预测试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。