2024-2025学年四川省广安市岳池县数学九年级第一学期开学考试模拟试题【含答案】
展开这是一份2024-2025学年四川省广安市岳池县数学九年级第一学期开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程的根是( )
A.B.C.,D.无实数根
2、(4分)在直角坐标系中,点P(-3,3)到原点的距离是( )
A. B.3C. 3D.6
3、(4分)一次函数满足,且随的增大而减小,则此函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)关于的方程的解是正数,则的取值范围是( )
A.B.C.D.
5、(4分)下列说法:① 平方等于64的数是8;② 若a,b互为相反数,ab≠0,则;③ 若,则的值为负数;④ 若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )
A.0个B.1个C.2个D.3个
6、(4分)如图所示,▱ABCD的对角线AC,BD相交于点O,,,,▱ABCD的周长( )
A.11B.13C.16D.22
7、(4分)一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是( )
A.1B.2C.3D.4
8、(4分)下列二次根式,是最简二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)写出一个图象经过点(1,﹣2)的函数的表达式:_____.
10、(4分)在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.
11、(4分)已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.
12、(4分)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为________.
13、(4分)计算:=____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)求S△ABC的面积.
15、(8分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.
(1)如图1,当点与点重合时,求的长;
(2)设,,求与的函数关系式,并写出定义域;
(3)如图2,联结,当是等腰三角形时,求的长.
16、(8分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.
操作发现:小颖在图 1 中画出△ABC,其顶点 A,B,C 都是格点,同时构造正方形 BDEF, 使它的顶点都在格点上,且它的边 DE,EF 分别经过点 C,A,她借助此图求出了△ABC 的面积.
(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB= ,BC= ,AC
= ;△ABC 的面积为 . 解决问题:
(2)已知△ABC 中,AB=,BC=2 ,AC=5 ,请你根据小颖的思路,在图 2的正方形网格中画出△ABC,并直接写出△ABC 的面积.
17、(10分)因式分解:
(1); (2).
18、(10分)如图,正方形ABCD中,E是AD上任意一点,于F点,于G点.
求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.
20、(4分)甲、乙两位选手各射击10次,成绩的平均数都是9.2环,方差分别是,,则____选手发挥更稳定.
21、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.
22、(4分)如图,△ABC 中,AB=BC=12cm,D、E、F 分别是 BC、AC、AB 边上的中点,则四边形 BDEF 的周长是__________cm.
23、(4分)线段、正三角形,平行四边形、菱形中,只是轴对称图形的是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校要从小红、小明和小亮三名同学中挑选一名同学参加数学素养大赛,在最近的四次专题测试中,他们三人的成绩如下表所示:
(1)请算出小红的平均分为多少?
(2)该校根据四次专题考试成绩的重要程度不同而赋予每个专题成绩一个权重,权重比依次为x:1:2:1,最后得出三人的成绩(加权平均数),若从高分到低分排序为小亮、小明、小红,求正整数x的值.
25、(10分)(1)因式分解:
(2)解不等式组:
26、(12分)为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查 名学生;
(2)请把条形图(图1)补充完整;
(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;
(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用因式分解法即可将原方程变为x(x-1)=0,即可得x=0或x-1=0,则求得原方程的根.
【详解】
解:∵x1=1x,
∴x1-1x=0,
∴x(x-1)=0,
∴x=0或x-1=0,
∴一元二次方程x1=1x的根x1=0,x1=1.
故选C.
此题考查了因式分解法解一元二次方程.熟练掌握一元二次方程的解法是解题关键.
2、B
【解析】
根据勾股定理可求点P(-3,3)到原点的距离.
【详解】
解:点P(-3,3)到原点的距离为=3,
故选:B.
本题考查勾股定理,熟练掌握勾股定理是解题的关键.
3、A
【解析】
根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.
故选A.
考点是一次函数图象与系数的关系.
4、D
【解析】
先求得分式方程的解,再由题意可得关于x的不等式,解不等式即得答案.
【详解】
解:解方程,得,
因为方程的解是正数,所以,
所以,解得.
故选D.
本题考查了分式方程的解法和不等式的解法,熟练掌握分式方程和不等式的解法是解题的关键.
5、B
【解析】
根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答.
【详解】
① 平方等于64的数是±8;
② 若a,b互为相反数,ab≠0,则;
③ 若,可得a≥0,则的值为负数或0;
④ 若ab≠0,当a>0,b>0时,=1+1=2;当a>0,b<0时,=1-1=0;当a<0,b>0时,=-1+1=0;当a<0,b<0时,=-1-1=-2;所以的取值在0,1,2,-2这四个数中,不可取的值是1.
综上,正确的结论为②,故选B.
本题考查了平方的计算、相反数的定义及绝对值的性质,熟练运用相关知识是解决问题的关键.
6、D
【解析】
根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.
【详解】
因为▱ABCD的对角线AC,BD相交于点O,,
所以OE是三角形ABD的中位线,
所以AD=2OE=6
所以▱ABCD的周长=2(AB+AD)=22
故选D
本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.
7、D
【解析】
试题分析:根据一次函数的性质,当y随x的增大而增大时,求得k的范围,在选项中找到范围内的值即可.
解:根据一次函数的性质,对于y=(k﹣3)x+2,
当(k﹣3)>0时,即k>3时,y随x的增大而增大,
分析选项可得D选项正确.
答案为D.
8、D
【解析】
根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.
【详解】
A, ,不是最简二次根式,故错误;
B,,不是最简二次根式,故错误;
C,,不是最简二次根式,故错误;
D,是最简二次根式,故正确;
故选:D.
本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设y=kx,把点(1,﹣2)代入即可(答案不唯一).
【详解】
设y=kx,把点(1,﹣2)代入,得
k=-2,
∴(答案不唯一).
故答案为:.
本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
10、0.1.
【解析】
直接利用频数÷总数=频率,进而得出答案.
【详解】
解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,
∴第5组的频率为:(30-2-10-7-8))÷30=0.1.
故答案为:0.1.
本题考查频数与频率,正确掌握频率求法是解题关键.
11、-1.
【解析】
先利用提公因式法因式分解,然后利用整体代入法求值即可.
【详解】
解:∵ab2+a2b=ab(a+b),
而a+b=5,ab=-6,
∴ab2+a2b=-6×5=-1.
故答案为:-1.
此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.
12、2或或
【解析】
分情况讨论:
(1)当PB为腰时,若P为顶点,则E点与C点重合,如图1所示:
∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,
∵P是AD的中点,
∴AP=DP=2,
根据勾股定理得:BP===;
若B为顶点,则根据PB=BE′得,E′为CD中点,此时腰长PB=;
(2)当PB为底边时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;
①当E在AB上时,如图2所示:
则BM=BP=,
∵∠BME=∠A=90°,∠MEB=∠ABP,
∴△BME∽△BAP,
∴,即,
∴BE=;
②当E在CD上时,如图3所示:
设CE=x,则DE=4−x,
根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,
∴42+x2=22+(4−x)2,
解得:x=,
∴CE=,
∴BE= ==;
综上所述:腰长为:,或,或;
故答案为,或,或.
点睛:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质并能进行推理计算是解决问题的关键.
13、4
【解析】
根据二次根式的性质化简即可.
【详解】
原式=.
故答案为:4.
本题考查了二次根式的性质,熟练掌握是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) y=x2+2x﹣3;(2)1.
【解析】
(1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值;
(2)根据(1)中抛物线的解析式可求出C点的坐标,然后根据三角形的面积公式即可求出△ABC的面积.
【详解】
(1)当x=0时,y=x﹣3=﹣3,则B(0,﹣3);
当y=0时,x﹣3=0,解得x=3,则A(3,0),
把A(3,0),B(0,﹣3)代入y=x2+bx﹣c得,解得,
∴抛物线的解析式为y=x2+2x﹣3;
(2)当y=0时,x2+2x﹣3=0,解得x1=﹣1,x2=3,则C(﹣1,0),
∴S△ABC=×(3+1)×3=1.
本题主要考查了一次函数与坐标轴的交点,二次函数解析式的确定、三角形面积的求法等知识点.考查了学生数形结合的数学思想方法.
15、(1)BC=5;(2);(3)的长为或3或.
【解析】
(1)根据垂直平分线性质可知,设,,在中用勾股定理求出,即可解答;
(2)联结,,在中,,在中,,消去二次项即可得到与的函数关系式;根据点是边上的一动点结合(1)即可得出的定义域;
(3)分三种情况讨论,分别画出图形,根据相等的边用勾股定理列方程求解即可.
【详解】
解:(1)∵梯形中,,,,
∴,
∵是线段的垂直平分线,
∴,
在中,,
又∵,,设,,
,
∴,
∴.
(2)联结,,
∵是线段的垂直平分线,
∴
∵,,
∴
在中,
在中,
∴
∴
(3)在中,,,
∴,
当是等腰三角形时
①∵
∴
∵
∴
∴
②
取中点,联结
∵为的中点
∴为梯形中位线
∴
∵
∴为中点,
∴此时与重合
∴
③
联结并延长交延长线于点
此时.
∴,,
∴,
∴在中,,
∵
∴解得,(不合题意含去)
∴综上所述,当是等腰三角形时,的长为或3或
本题综合考查了矩形的性质、勾股定理解三角形、等腰三角形性质和判定、全等三角形性质和判定,灵活运用勾股定理求线段长是解题的关键.
16、(1);(2)图见解析,1
【解析】
根据勾股定理、矩形的面积公式、三角形面积公式计算.
【详解】
解:(1)AB==1,BC==,AC==,
△ABC 的面积为:4×4﹣×3×4-×1×4﹣×3×1= ,
故答案为:1; ;;;
(2)△ABC 的面积:7×2﹣×3×1﹣ ×4×2﹣ ×7×1=1.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
17、 (1) (a-1)(a+1);(1) 3(x-y)1.
【解析】
(1)直接提取公因式(a-1)即可;
(1)先提取公因式3,再根据完全平方公式进行二次分解.
【详解】
(1)a(a-1)+1(a-1),
=(a-1)(a+1);
(1)3x1-6xy+3y1
=3(x1-1xy+y1)
=3(x-y)1.
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
18、证明见解析
【解析】
根据于F点,于G点,可得,根据四边形ABCD是正方形,可得,再根据,,可得:
,在和中,由,可判定≌,根据全等三角形的性质可得:.
【详解】
证明:于F点,于G点,
,
四边形ABCD是正方形,
,
,
又,
,
在和中,
,
≌,
,
本题主要考查正方形的性质和全等三角形的判定和性质,解决本题的关键是要熟练掌握正方形的性质和全等三角形的判定和性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.
【详解】
解:解方程得第三边的边长为2或1.
第三边的边长,
第三边的边长为1,
这个三角形的周长是.
故答案为2.
本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
20、甲
【解析】
根据方差越大波动越大越不稳定,作出判断即可.
【详解】
解:∵S甲2=0.015,S乙2=0.025,
∴S乙2>S甲2,
∴成绩最稳定的是甲.
故答案为:甲.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、5
【解析】
首先根据矩形的性质可得出AD∥BC,即∠1=∠3,然后根据折叠知∠1=∠2,C′D=CD、BC′=BC,可得到∠2=∠3,进而得出BE=DE,设DE=x,则EC′=8-x,利用勾股定理求出x的值,即可求出DE的长.
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,即∠1=∠3,
由折叠知,∠1=∠2,C′D=CD=4、BC′=BC=8,
∴∠2=∠3,即DE=BE,
设DE=x,则EC′=8−x,
在Rt△DEC′中,DC′2+EC′2=DE2
∴42+(8−x)2=x2解得:x=5,
∴DE的长为5.
本题考查折叠问题,解题的关键是掌握折叠的性质和矩形的性质.
22、24
【解析】
根据中点的性质求出BF、BD,根据中位线的性质求出DE、FE,从而求出四边形BDEF的周长.
【详解】
∵D、E、F 分别是 BC、AC、AB 边上的中点,
∴,
,,
∵AB=BC=12cm
∴BF=DE=BD=BF=6cm
∴四边形BDEF的周长为24cm.
本题考查线段的中点、三角形中位线定理.解决本题的关键是利用三角形的中位线平行于第三边并且等于第三边的一半求出DE和FE.
23、正三角形
【解析】
沿着一条直线对折,图形两侧完全重合的是轴对称图形,绕着某一点旋转180°后能与原图形重合的是中心对称图形,根据定义逐个判断即可.
【详解】
线段既是轴对称图形,又是中心对称图形;
正三角形是轴对称图形,不是中心对称图形;
平行四边形不是轴对称图形,是中心对称图形;
菱形既是轴对称图形,又是中心对称图形;
只是轴对称图形的是正三角形,
故答案为:正三角形.
本题考查轴对称图形与中心对称图形的判断,熟练掌握定义是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)77.5分;(2)1
【解析】
(1)根据平均数公式求小红的平均成绩即可;
(2)利用加权平均数公式分别把三人的平均成绩表示出来,再根据三人的成绩的高低列不等式,求出x的范围,在此范围内取正整数即可
【详解】
(1)解:(70+75+80+85)÷4=77.5分,
答:小红的平均分为77.5分.
(2)解:由题意得:
> >
解得:2<x<4,
∵x为正整数的值.
∴x=1,
答:正整数x的值为1.
本题主要考查不等式的应用,第二问的解题关键在于能够理解题意列出不等式.
25、(1)2ax(x+2)(x−2);(2)−3<x<1.
【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式=2ax(x2−4)=2ax(x+2)(x−2);
(2),
由①得:x>−3,
由②得:x<1,
则不等式组的解集为−3<x<1.
此题考查了提公因式法与公式法的综合运用,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
26、(1)200;(2)作图略;(3)108°;(4)1.
【解析】
试题分析:根据其他的人数和比例得出总人数;根据总人数和比例求出古筝和琵琶的人数;根据二胡的人数和总人数的比例得出圆心角的度数;根据总人数和喜欢古筝的比例得出人数.
试题解析:(1)20÷10%=200(名)答:一共调查了200名学生;
(2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名);
补全条形图如图;
(3)二胡部分所对应的圆心角的度数为:×360°=108°;
(4)1500×=1(名).
答:1500名学生中估计最喜欢古琴的学生人数为1.
考点:统计图.
题号
一
二
三
四
五
总分
得分
批阅人
学生
专题
集合证明
PISA问题
应用题
动点问题
小红
70
75
80
85
小明
80
80
72
76
小亮
75
75
90
65
相关试卷
这是一份2024-2025学年广西岳池县联考数学九年级第一学期开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年城郊中学数学九年级第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省广安市岳池县2023-2024学年九年级上学期数学中考一诊试题(含答案),共16页。试卷主要包含了本试卷分为试题卷和答题卡两部分,如图,将绕点C顺时针旋转得到等内容,欢迎下载使用。