2024-2025学年四川省绵阳市游仙区九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.5D.6
2、(4分)点P(1,2)关于原点的对称点P′的坐标为( )
A.(2,1) B.(﹣1,﹣2) C.(1,﹣2) D.(﹣2,﹣1)
3、(4分)在平面直角坐标系中,点到原点的距离是( )
A.B.C.D.
4、(4分)下列窗花图案中,是轴对称图形的是( )
A.B.
C.D.
5、(4分)如图,已知正比例函数与一次函数的图象交于点.下面有四个结论:①;②;③当时,;④当时,.其中正确的是()
A.①②B.②④C.③④D.①③
6、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)
7、(4分)的绝对值是( )
A.B.C.D.
8、(4分)下列事件中,确定事件是( )
A.向量与向量是平行向量B.方程有实数根;
C.直线与直线相交D.一组对边平行,另一组对边相等的四边形是等腰梯形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)用科学记数法表示______.
10、(4分)如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.
11、(4分)计算:=__________.
12、(4分)如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______
13、(4分)已知a+b=0目a≠0,则=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在中,,以斜边为底边向外作等腰,连接.
(1)如图1,若.①求证:分;
②若,求的长.
(2)如图2,若,求的长.
15、(8分)已知,二次函数≠0的图像经过点(3,5)、(2,8)、(0,8).
①求这个二次函数的解析式;
②已知抛物线≠0,≠0,且满足≠0,1,则我们称抛物线互为“友好抛物线”,请写出当时第①小题中的抛物线的友好抛物线,并求出这“友好抛物线”的顶点坐标.
16、(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明.
17、(10分)计算:2×÷3﹣(﹣2.
18、(10分)射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)
(1)由表格中的数据,计算出甲的平均成绩是 环,乙的成绩是 环.
(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.
20、(4分)如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=___.
21、(4分)在直角坐标系中,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3…按照这样的作法进行下去,则点A20的坐标是______.
22、(4分)设甲组数:,,,的方差为,乙组数是:,,,的方差为,则与的大小关系是_______(选择“>”、“<”或“=”填空).
23、(4分)不等式组的所有整数解的积是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
已知.
(1)观察发现
如图①,若点是和的角平分线的交点,过点作分别交、于、,填空: 与、的数量关系是________________________________________.
(2)猜想论证
如图②,若点是外角和的角平分线的交点,其他条件不变,填: 与、的数量关系是_____________________________________.
(3)类比探究
如图③,若点是和外角的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.
25、(10分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
(2)若按完成作业、单元检测、期末考试三项成绩按的权重来确定期末评价成绩.
①请计算小张的期末评价成绩为多少分?
②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
26、(12分)与位似,且,画出位似中心,并写出与的位似比.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
2、B
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
点P(1,2)关于原点的对称点P′的坐标为(-1,-2),
故选B.
此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
3、C
【解析】
根据勾股定理可求点到原点的距离.
【详解】
解:点到原点的距离为:;
故选:C.
本题考查了勾股定理,两点间的距离公式,熟练掌握勾股定理是解题的关键.
4、A
【解析】
根据轴对称图形的概念求解.
【详解】
解:A、是轴对称图形,符合题意;
B、不是轴对称图形,不合题意;
C、不是轴对称图形,不合题意;
D、不是轴对称图形,不合题意.
故选:A.
本题考查了轴对称图形的识别,熟练掌握基本概念是解题的关键.
5、D
【解析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.
【详解】
如图所示:
∵y1=ax,经过第一、三象限,
∴a>0,故①正确;
∵与y轴交在正半轴,
∴b>0,
故②错误;
∵正比例函数y1=ax,经过原点,
∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;
当x>2时,y1>y2,故④错误.
故选:D.
此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.
6、B
【解析】
试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
考点:点的平移.
7、D
【解析】
直接利用绝对值的定义分析得出答案.
【详解】
解:-1的绝对值是:1.
故选:D.
此题主要考查了绝对值,正确把握绝对值的定义是解题关键.
8、B
【解析】
根据“必然事件和不可能事件统称确定事件”逐一判断即可.
【详解】
A. 向量与向量是平行向量,是随机事件,故该选项错误;
B. 方程有实数根,是确定事件,故该选项正确;
C. 直线与直线相交,是随机事件,故该选项错误;
D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误;
故选:B.
本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000021的小数点向右移动1位得到2.1,
所以0.00000021用科学记数法表示为2.1×10-1,
故答案为2.1×10-1.
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、
【解析】
过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.
【详解】
解:过P作PH⊥OY于点H,
∵PD∥OY,PE∥OX,
∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,
∴EP=OD=a,∠EPH=30°,
∴EH=EP=a,
∴a+2b=2()=2(EH+EO)=2OH,
∴当P在点B处时,OH的值最大,
此时,OC=OA=1,AC==BC,CH=,
∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.
故答案为5.
本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.
11、1
【解析】
根据分式的加法法则运算即可.
【详解】
原式====1,
故答案为1.
本题考查了分式的加法,分母相同分子相加是解决本题的重点.
12、
【解析】
根据题意画出翻折后的图形,连接OE、DE,先证明△OED是等边三角形,再利用同底等高的三角形面积相等,说明S△AED=S△OED,作OF⊥ED于F,求出△OED的面积即可得出结果.
【详解】
解:如图,△AEC是△ABC沿AC翻折后的图形,连接OE、DE,
∵四边形ABCD是平行四边形,
∴OB=OD=BD=2,
∵△AEC是△ABC沿AC翻折后的图形,∠AOB=60º,
∴∠AOE=60º,OE=OB,
∴∠EOD=60º,OE=OD,
∴△OED是等边三角形,
∴∠DEO=∠AOE=60º,ED=OD=2,
∴ED∥AC,
∴S△AED=S△OED,
作OF⊥ED于F,DF=ED=1,
∴OF==,
∴S△OED=ED·DF=
∴S△AED=.
故答案为:.
本题考查了图形的变换,平行四边形的性质,等边三角形的判定与性质,找到S△AED=S△OED是解题的关键.
13、1
【解析】
先将分式变形,然后将代入即可.
【详解】
解:
,
故答案为1
本题考查了分式,熟练将式子进行变形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)①见详解,②1;(2)-
【解析】
(1)①过点P作PM⊥CA于点M,作PN⊥CB于点N,易证四边形MCNP是矩形,利用已知条件再证明△APM≌△BPN,因为PM=PN,所以CP平分∠ACB;
②由题意可证四边形MCNP是正方形,
(2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,由”SAS“可证△ABE≌△APC,可得BE=CP=5,由直角三角形的性质和勾股定理可求BC的长.
【详解】
证明:(1)①如图1,过点P作PM⊥CA于点M,作PN⊥CB于点N,
∴∠PMC=∠PNC=90°,
∵∠ACB=90°
∴四边形MCNP是矩形,
∴∠MPN=90°,
∵PA=PB,∠APB=90°,
∴∠MPN−∠APN=∠APB−∠APN,
∴∠APM=∠NPB,
∵∠PMA=∠PNB=90°,
在△APM和△BPN中,
∴△APM≌△BPN(AAS),
∴PM=PN,
∴CP平分∠ACB;
②∵四边形MCNP是矩形,且PN=PM,
∴四边形MCNP是正方形,
∴PN=CN=PM=CM
∴PC=PN=6,
∴PN=6=CN=CM=MP
∴AM=CM−AC=1
∵△APM≌△BPN
∴AM=BN,
∴BC=CN+BN=6+AM=6+1=1.
(2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,
∵△AEC是等边三角形
∴AE=AC=EC=5,∠EAC=∠ACE=60°,
∵△APB是等腰三角形,且∠APB=60°
∴△APB是等边三角形,
∴∠PAB=60°=∠EAC,AB=AP,
∴∠EAB=∠CAP,且AE=AC,AB=AP,
∴△ABE≌△APC(SAS)
∴BE=CP=5,
∵∠ACE=60°,∠ACB=90°,
∴∠ECF=30°,
∴EF=EC=,FC=EF=,
∵BF=,
∴BC=BF−CF=-
本题是四边形综合题,考查了矩形判定和性质,正方形的判定和性质,全等三角形的判定和性质,等边三角形的性质,直角三角形的性质,角平分线的性质等知识,添加恰当辅助线构造全等三角形是本题的难点.
15、(1);(2)(1,-18)或(1,)
【解析】
(1)先把三个点的坐标的人y=ax2+bx+c=0(a≠0)得到关于a、b、c的方程组,然后解方程组求出a、b、c 的值;
(2)根据图中的定义得到===-或===-,则可得到友好抛物线的解析式是:y=2x2-4x-16或y=x2-x-4,然后分别配成顶点式,则可得到它们的顶点坐标.
解:(1)根据题意,得 可以解得,
∴这个抛物线的解析式是.
(2)根据题意,得或
解得a2=2,b2=-4,c2=-16或a1=,b1=-1,c1=-4,,
友好抛物线的解析式是:y=2x2-4x-16或y=x2-x-4,
∴它的顶点坐标是(1,-18)或(1,)
“点睛”二次函数是初中数学的一个重要内容之一,其中解析式的确定一般都采用待定系数法求解,但是要求学生根据给出的已知条件的不同,要能够恰当地选取合适的二次函数解析式的形式,选择得当则解题简捷,若选择不得当,就会增加解题的难度.
16、(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
【详解】
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,顶点在BC边上,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=-,
∴抛物线解析式为y=—(x﹣2)2+3,即y=—x2+3x;
(2)△EDB为等腰直角三角形.
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形.
此题考查二次函数综合题,解题关键在于利用勾股定理逆定理进行求证.
17、
【解析】
利用二次根式的乘除法则和完全平方公式计算.
【详解】
原式=2××× -(2-2+3)-2
=-1+2-2
=-1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
18、(1)9,9;(2)甲.
【解析】
分析:1、首先根据图表得出甲、乙每一次的测试成绩,再利用平均数的计算公式分别求出甲、乙的平均成绩;
2、得到甲、乙的平均成绩后,再结合方差的计算公式即可求出甲、乙的方差;接下来结合方差的意义,从稳定性方面进行分析,即可得出结果.
详解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,
乙的平均成绩是:(10+7+10+10+9+8)÷6=9;
(2)甲的方差=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=.
乙的方差=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]= .
推荐甲参加全国比赛更合适,理由如下:
两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.
点睛:本题考查了平均数以及方差的求法及意义,正确掌握方差的计算公式是解答本题的关键. 方差的计算公式为:.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=﹣2x﹣2
【解析】
根据“左加右减,上加下减”的平移规律即可求解.
【详解】
解:直线先向上平移3个单位,再向左平移2个单位得到直线,即.
故答案为.
本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键.
20、1
【解析】
连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.
【详解】
解:连接DC,
∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,
∴DC=DA,
∴∠ACD=∠A=30°,∠BCD=30°,
,
∵∠BCD=30°,
,
∴DE=1,
故答案为1.
本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.
21、(219,0)
【解析】
根据题意,由(1,0)和直线关系式y=x,可以求出点B1的坐标,在Rt△OA1B1中,根据勾股定理,可以求出OB1的长;再根据OB1=OA2确定A2点坐标,同理可求出A3、A4、A5……,然后再找规律,得出An的坐标,从而求得点A20的坐标.
【详解】
当时,,即A1B1=,
在Rt△OA1B1中,由勾股定理得OB1=2,
∵OB1=OA2,
∴A2 (2,0)
同理可求:A3(4,0)、A4(8,0)、A5(16,0)……
由点:A1(1,0)、A2(2,0)、A3(4,0)、A4(8,0)、A5(16,0)……
即:A1(20,0)、A2(21,0)、A3(22,0)、A4(23,0)、A5(24,0)……可得An(2n-1,0)
∴点A20的坐标是(219,0),
故答案为:(219,0).
考查一次函数图象上的点坐标特征,勾股定理,以及点的坐标的规律性.在找规律时,A点的横坐标的指数与A所处的位数容易搞错,应注意.
22、
【解析】
根据方差的意义进行判断.
【详解】
因为甲组数有波动,而乙组的数据都相等,没有波动,
所以>.
故答案为:>.
此题考查方差,解题关键在于掌握方差的意义.
23、1
【解析】
先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.
【详解】
由1-2x<3,得:x>-1,
由 ≤2,得:x≤3,
所以不等式组的解集为:-1<x≤3,
它的整数解为1、1、2、3,
所有整数解的积是1.
故答案为1.
此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)不成立, ,证明详见解析.
【解析】
(1)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;
(2)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;
(3)根据平行线的性质与角平分线的定义得出 EF 与 BE 、 CF 的数量关系.
【详解】
(1)EF=BE+CF.
∵ 点 D 是 ∠ABC 和 ∠ACB 的角平分线的交点,
∴∠EBD=∠DBC , ∠FCD=∠DCB .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCB .
∴ ∠EDB=∠EBD , ∠FCD=∠FDC .
∴EB=ED , DF=CF .
∴EF=BE+CF .
故本题答案为: EF=BE+CF .
(2)EF=BE+CF.
∵D 点是外角 ∠CBE 和 ∠BCF 的角平分线的交点,
∴∠EBD=∠DBC , ∠FCD=∠DCB .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCB .
∴ ∠EDB=∠EBD , ∠FCD=∠FDC .
∴EB=ED , DF=CF .
∴EF=BE+CF .
故本题答案为: EF=BE+CF .
(3)不成立; EF=BE−CF ,证明详见解析.
∵ 点 D 是 ∠ABC 和外角 ∠ACM 的角平分线的交点,
∴∠EBD=∠DBC , ∠ACD=∠DCM .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCM .
∴∠EBD=∠EDB , ∠FDC=∠FCD .
∴BE=ED , FD=FC .
∵EF=ED−FD ,
∴EF=BE−CF .
本题考查了平行线的性质,等腰三角形的判定,以及角平分线的定义等知识.解决本题的关键突破口是掌握平行线的性质与等腰三角形的概念.
25、 (1)80;(2)①81;②85.
【解析】
(1)直接利用算术平均数的定义求解可得;
(2)根据加权平均数的定义计算可得.
【详解】
解:(1)小张的期末评价成绩为(分;
(2)①小张的期末评价成绩为(分;
②设小王期末考试成绩为分,
根据题意,得:,
解得,
小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
26、作图见详解,位似比为1:1
【解析】
连接BB′、CC′,它们的交点P为位似中心,根据位似的性质相似比等于位似比,所以计算AB与A′B′的值即可得到△ABC与△A′B′C′的位似比.
【详解】
解:如图,点P为位似中心.
∵AB=1,A′B′=1,
∴△ABC与△A′B′C′的位似比=AB:A′B′=1:1.
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心. 注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行或共线.
题号
一
二
三
四
五
总分
得分
批阅人
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
7
10
10
9
8
完成作业
单元测试
期末考试
小张
70
90
80
小王
60
75
2024-2025学年四川省绵阳市东辰国际学校九年级数学第一学期开学达标检测试题【含答案】: 这是一份2024-2025学年四川省绵阳市东辰国际学校九年级数学第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省乐山市名校数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年四川省乐山市名校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
[数学]四川省绵阳市游仙区2024-2025学年八年级上学期开学考试试题(解析版): 这是一份[数学]四川省绵阳市游仙区2024-2025学年八年级上学期开学考试试题(解析版),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。