2024-2025学年四川省南充市营山县小桥中学数学九上开学达标检测试题【含答案】
展开
这是一份2024-2025学年四川省南充市营山县小桥中学数学九上开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数据中,能够成为直角三角形三条边长的一组数据是( ).
A.B.C.D.0. 3,0. 4,0. 5
2、(4分)在中,点、分别为边、的中点,则与的面积之比为
A.B.C.D.
3、(4分)如图,三个正比例函数的图像分别对应的解析式是:①;②;③,则、、的大小关系是( ).
A.B.C.D.
4、(4分)顺次连接四边形各边中点所得到的四边形是菱形,则四边形必须满足的条件是( )
A.对角线互相垂直B.对角线相等
C.一组邻边相等D.一个内角是直角
5、(4分)矩形的对角线一定( )
A.互相垂直平分且相等B.互相平分且相等
C.互相垂直且相等D.互相垂直平分
6、(4分)下列四边形中是轴对称图形的个数是( )
A.4个B.3个C.2个D.1个
7、(4分)下列图形中,是轴对称图形,不是中心对称图形的是( )
A.B.
C.D.
8、(4分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5 cm,则BD=________.
10、(4分)如图,直线y1=-x+a与直线y2=bx-4相交于点P(1,-3),则不等式-x+a≥bx-4的解集是___________.
11、(4分)已知直线与直线平行,那么_______.
12、(4分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为____.
13、(4分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知等腰三角形的两边长分别为a,b,且a,b满足|2a-3b+5|+(2a+3b-13)2=0,求此等腰三角形的周长.
15、(8分)某校为了解八年级男生立定跳远测试情况,随机抽取了部分八年级男生的测试成绩进行统计,根据评分标准,将他们的成绩分为优秀、良好、及格、不及格四个等级,以下是根据调查结果绘制的统计图表的一部分.
根据以上信息,解答下列问题:
(1)被调查的男生中,成绩等级为不及格的男生人数有__________人,成绩等级为良好的男生人数占被调查男生人数的百分比为__________%;
(2)被调查男生的总数为__________人,条形统计图中优秀的男生人数为__________人;
(3)若该校八年级共有300名男生,根据调查结果,估计该校八年级男生立定跳远测试成绩为良好和优秀的男生人数.
16、(8分)如图,是等边三角形,是中线,延长至,.
(1)求证:;
(2)请在图中过点作交于,若,求的周长.
17、(10分)如图,点 O 是等边△ABC 内一点,∠AOB=105°,∠BOC 等于α,将△BOC 绕点 C 按 顺时针方向旋转 60°得△ADC,连接 OD.
(1)求证:△COD 是等边三角形.
(2)求∠OAD 的度数.
(3)探究:当α为多少度时,△AOD 是等腰三角形?
18、(10分).某酒厂生产A,B两种品牌的酒,平均每天两种酒共可售出600瓶,每种酒每瓶的成本和售价如表所示,设平均每天共获利y元,平均每天售出A种品牌的酒x瓶.
(1)请写出y关于x的函数关系式;
(2)如果该厂每天至少投入成本25000元,且售出的B种品牌的酒不少于全天销售总量的55%,那么共有几种销售方案?并求出每天至少获利多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于有增根,则_____;
20、(4分)分式的值为0,那么的值为_____.
21、(4分)正十边形的外角和为__________.
22、(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为1,5,1,1.则最大的正方形E的面积是___.
23、(4分)如图,已知∠1=100°,∠2=140°,那么∠3=_____度.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:
(1) (2)
25、(10分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
(3)结合图像写出不等式的解集;
26、(12分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先根据三角形的三边关系定理看看能否组成三角形,再根据勾股定理的逆定理逐个判断即可.
【详解】
A、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;
B、(32)2+(42)2≠(52)2,即三角形不是直角三角形,故本选项不符合题意;
C、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;
D、0.32+0.42=0.52,即三角形是直角三角形,故本选项符合题意;
故选:D.
考查了三角形的三边关系定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
2、C
【解析】
由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,则DE∥BC,进而得出△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.
【详解】
如图所示,
∵点D、E分别为边AB、AC的中点,
∴DE为△ABC的中位线,
∴DE∥BC,DE=BC,
∴△ADE∽△ABC,
∴.
故选C.
本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.
3、C
【解析】
根据正比例函数图象的性质分析,k>0,经过一、三象限;k
相关试卷
这是一份2024-2025学年陕西省西安工业大附属中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省扬州市江都区江都实验中学数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省溧水高级中学数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。