2024-2025学年四川省遂宁市安居育才中学数学九上开学学业水平测试试题【含答案】
展开
这是一份2024-2025学年四川省遂宁市安居育才中学数学九上开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1, 2)在这个反比例函数上,a的值可以是( )
A.0B.1C.2D.3
2、(4分)下列长度的三条线段,能成为一个直角三角形的三边的一组是( )
A.B.1,2,C.2,4,D.9,16,25
3、(4分)为了了解我市2019年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析。在这个问题中,样本是指( )
A.150B.被抽取的150名考生
C.我市2019年中考数学成绩D.被抽取的150名考生的中考数学成绩
4、(4分)无论a取何值,关于x的函数y=﹣x+a2+1的图象都不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)在ABCD中,∠A:∠B:∠C:∠D的度数比值可能是( )
A.1:2:3:4B.1:2:2:1C.1:1:2:2D.2:1:2:1
6、(4分)如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC和BD相交于点O,OE⊥BD交AD于E,则ΔABE的周长为( )
A.4cmB.6cmC.8cmD.10cm
7、(4分)如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为( )
A.40°B.50°C.60°D.70°
8、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,函数y=kx+b(k≠0)的图象经过点(1,2),则不等式kx+b>2的解集为______.
10、(4分)如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a﹣b的值为____.
11、(4分)在平面直角坐标系中,△ABC上有一点P(0,2),将△ABC向左平移2个单位长度,再向上平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是_____.
12、(4分)如图,在数轴上点A表示的实数是___.
13、(4分)已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,﹣3,a4,a5的平均数和中位数分别是_____,_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了了解某种电动汽车的性能,某机构对这种电动汽车进行抽检,获得如图中不完整的统计图,其中,,,表示 一次充电后行驶的里程数分别为,,,.
(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;
电动汽车一次充电后行驶里程数的条形统计图
电动汽车一次充电后行驶里程数的扇形统计图
(2)求扇形统计图中表示一次充电后行驶路为的扇形圆心角的度数;
(3)估计这种电动汽车一次充电后行驶的平均里程多少?
15、(8分)如图,在矩形ABCD中AD=12,AB=9,E为AD的中点,G是DC上一点,连接BE,BG,GE,并延长GE交BA的延长线于点F,GC=5
(1)求BG的长度;
(2)求证:是直角三角形
(3)求证:
16、(8分)甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?
17、(10分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填空:a= ,b= ,c= ;
(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?
(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.
18、(10分)如图在△ABC中,AD是BC边上的高,CE是AB边上的中线,且∠B=2∠BCE,求证:DC=BE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.
20、(4分)若点A(2,m)在平面直角坐标系的x轴上,则点P(m-1,m+3)到原点O的距离为_____.
21、(4分)一元二次方程x2-2x-k=0有两个相等的实数根,则k=________。
22、(4分)一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.
23、(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)鞋子的“鞋码”和鞋长(cm)是一次函数关系,下表是几组“鞋码”与鞋长的对应数值:
(1)设鞋长为,“鞋码”为,求与之间的函数关系式;
(2)如果你需要的鞋长为24cm,那么应该买多大码的鞋?
25、(10分)已知一次函数,.
(1)若方程的解是正数,求的取值范围;
(2)若以、为坐标的点在已知的两个一次函数图象上,求的值;
(3)若,求的值.
26、(12分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF,
求证:四边形ABCD是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.
解:∵反比例函数,在每个象限内y随着x的增大而增大,
∴函数图象在二、四象限,
∴图象上的点的横、纵坐标异号.
A、a=0时,得P(-1,2),故本选项正确;
B、a=1时,得P(0,2),故本选项错误;
C、a=2时,得P(1,2),故本选项错误;
D、a=3时,得P(2,2),故本选项错误.
故选A.
此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.
2、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误;
B、∵12+()2=22,∴能构成直角三角形,故本选项正确;
C、∵22+()2≠42,∴不能构成直角三角形,故本选项错误;
D、∵92+162≠252,∴不能构成直角三角形,故本选项错误.
故选B.
本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
3、D
【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
样本是抽取150名考生的中考数学成绩,
故选:D.
此题考查总体、个体、样本、样本容量,难度不大
4、C
【解析】
根据题目中的函数解析式和一次函数的性质可以解答本题.
【详解】
解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,
∴函数y=﹣x+a2+1经过第一、二、四象限,不经过第三象限,
故选:C.
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
5、D
【解析】
根据平行四边形的两组对角分别相等判定即可
【详解】
解:根据平行四边形的两组对角分别相等,可知D正确.
故选:D.
此题主要考查了平行四边形的性质,熟知平行四边形的两组对角分别相等这一性质是解题的关键.
6、D
【解析】
分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.
详解:∵四边形ABCD是平行四边形,
∴AC、BD互相平分,
∴O是BD的中点.
又∵OE⊥BD,
∴OE为线段BD的中垂线,
∴BE=DE.
又∵△ABE的周长=AB+AE+BE,
∴△ABE的周长=AB+AE+DE=AB+AD.
又∵□ABCD 的周长为20cm,
∴AB+AD=10cm
∴△ABE的周长=10cm.
故选D.
点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.
请在此填写本题解析!
7、D
【解析】
根据翻折不变性即可解决问题;
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1=∠FEC,
由翻折不变性可知:∠FEA=∠FEC,
∵∠1=70°,
∴∠FEA=70°,
故选D.
本题考查了矩形的性质、平行线的性质、翻折变换等知识,解题的关键是灵活运用所学知识解决问题.
8、D
【解析】
解:∵S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,∴S甲2>S乙2>S丙2>S丁2,故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>1
【解析】
观察函数图象得到即可.
【详解】
解:由图象可得:当x>1时,kx+b>2,
所以不等式kx+b>2的解集为x>1,
故答案为:x>1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
10、1
【解析】
试题解析:由B点平移前后的纵坐标分别为2、4,可得B点向上平移了2个单位,
由A点平移前后的横坐标分别是为1、3,可得A点向右平移了2个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=2,b=2,
故a-b=1.
【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
11、(﹣2,5)
【解析】
平移的规律:平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
解:由点的平移规律可知,此题规律是:向左平移2个单位再向上平移3个单位,
照此规律计算可知得到的新三角形上与点P相对应的点的坐标是(0﹣2,2+3),即(﹣2,5).
故答案为(﹣2,5).
本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.
12、
【解析】
首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.
【详解】
OB==,
∵OB=OA,
∴点A表示的实数是,故答案为:.
本题考查实数与数轴、勾股定理,解题的关键是掌握勾股定理的应用.
13、 ,
【解析】
根据五个数的平均数为m,可以表示五个数的和为5m,后来加上一个数﹣3,那么六个数的和为5m﹣3,因此六个数的平均数为(5m﹣3)÷6,将六个数从小到大排列后,处在第3、4位的两个数的平均数为(a4+a3)÷1,因此中位数是(a4+a3)÷1.
【详解】
a1,a1,a3,a4,a5的平均数是m,则a1+a1+a3+a4+a5=5m,
数据a1,a1,a3,﹣3,a4,a5的平均数为(a1+a1+a3﹣3+a4+a5)÷6=,
数据a1,a1,a3,﹣3,a4,a5按照从小到大排列为:﹣3, a5,a4,a3,a1, a1,处在第3、4位的数据的平均数为 ,
故答案为:,.
考查平均数、中位数的意义及计算方法,解题关键在于灵活应用平均数的逆运算.
三、解答题(本大题共5个小题,共48分)
14、(1)总共有辆.类有10辆,图略;(2)72°;(3)这种电动汽车一次充电后行驶的平均里程数为千米.
【解析】
(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出这次被抽检的电动汽车总量,再分别减去B、C、D等级的辆数,得到A等级的辆数,即可补全条形图;
(2)用D等级的辆数除以汽车总量,得到其所占的百分比,再乘以360°得到扇形圆心角的度数;
(3)用总里程除以汽车总辆数,即可解答.
【详解】
解:(1)这次被抽检的电动汽车共有30÷30%=100(辆).
A等级汽车数量为:100-(30+40+20)=10(辆).
条形图补充如下:
(2)D等级对应的圆心角度数为.
(3).
答:这种电动汽车一次充电后行驶的平均里程数为千米.
本题考查条形统计图、扇形统计图和加权平均数的定义,解题的关键是明确题意,找出所求问题需要的条件.
15、(1)13(2)见解析(3)见解析
【解析】
(1)在Rt△BCG中利用勾股定理即可求解;
(2)利用勾股定理依次求出BE,EG,再利用勾股定理逆定理即可证明;
(3)由E点为AD中点得到E为FG中点,再根据BE⊥FG得到△BFG为等腰三角形,得到∠F=∠BGF,再根据平行线的性质即可证明.
【详解】
(1)∵四边形ABCD为矩形,∴BC=AD=12,∠C=90°,
∴BG=
(2)∵E为AD中点,∴AE=DE=6,
∴BE=
∵DG=CD-GC=4,
∴EG=
∴BG2=DG2+EG2,
∴是直角三角形
(3)∵AE=DE,∠FAE=∠D=90°,又∠AEF=∠DEG,
∴△AEF≌△DEG,
∴E为EG中点,又BE⊥FG,
∴△BFG为等腰三角形,
∴∠F=∠BGF,
又BF∥CD,
∴∠F=
∴
此题主要考查矩形的性质,解题的关键是熟知勾股定理与全等三角形的判定定理.
16、甲机器人每小时各检测零件30个,乙机器人每小时检测零件20个。
【解析】
设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个,根据题意列出方程即可.
【详解】
解:设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个
由题得
解得
检验,符合题意,则甲:.
本题考查的是分式方程,熟练掌握分式方程是解题的关键.
17、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.
【解析】
(1)根据平均数、中位数、众数的概念分析计算即可;
(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;
(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.
【详解】
解:(1)七年级的平均分a=,众数b=85,
八年级选手的成绩是:70,75,80,100,100,故中位数c=80;
故答案为85,85,80;
(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,
故七年级决赛成绩较好;
(3)S2七年级=(分2),
S2七年级<S2八年级
∴七年级代表队选手成绩比较稳定.
本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.
18、见解析.
【解析】
连接DE.想办法证明∠BCE=∠DEC即可解决问题.
【详解】
证明:连接DE.
∵AD是BC边上的高,CE是AB边上的中线,
∴∠ADB=90°,AE=BE,
∴BE=AE=DE,
∴∠EBD=∠BDE,∵∠B=2∠BCE,
∴∠BDE=2∠BCE,
∵∠BDE=∠BCE+∠DEC,
∴∠BCE=∠DEC,
∴BE=DC.
本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、±1
【解析】
试题分析:根据坐标与图形得到三角形OAB的两边分别为|a|与5,然后根据三角形面积公式有:,
解得a=1或a=-1,
即a的值为±1.
考点:1.三角形的面积;2.坐标与图形性质.
20、
【解析】
首先根据x轴上的点纵坐标为0得出m的值,再根据勾股定理即可求解.
【详解】
解:∵点A(2,m)在直角坐标系的x轴上,
∴m=0,
∴点P(m-1,m+3),即(-1,3)到原点O的距离为.
故答案为:.
本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.求出m的值是解题的关键.
21、-1
【解析】
根据已知方程有两个相等的实数根,得出b2-4ac=0,建立关于k的方程,解方程求出k的值即可.
【详解】
∵ 一元二次方程x2-2x-k=0有两个相等的实数根,
∴b2-4ac=0,即4+4k=0
解之:k=-1
故答案为:-1
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式:△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
22、1
【解析】
根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.
【详解】
∵这组数据的中位数和平均数相等,
∴(4+5)÷2=(2+4+5+x)÷4,
解得:x=1.
故答案为:1.
此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.
23、.
【解析】
根据菱形的性质、折叠的性质,以及∠ABC=120°,可以得到△ABD△BCD都是等边三角形,根据三角形的内角和和平角的意义,可以找出△BGE∽△DFG,对应边成比例,设AF=x、AE=y,由比例式列出方程,解出y即可.
【详解】
解:∵菱形ABCD中,∠ABC=120°,
∴AB=BC=CD=DA,∠A=60°,
∴AB=BC=CD=DA=BD=3+1=4,
∴∠ADB=∠ABD=60°,
由折叠得:AF=FG,AE=EG,∠EGF=∠A=60°,
∵∠DFG+∠DGF=180°-60°=120°,∠BGE+∠DGF=180°-60°=120°,
∴∠DFG=∠BGE,
∴△BGE∽△DFG,
∴ ,
设AF=x=FG,AE=y=EG,则:DF=4-x,BE=4-y,
即: ,
当 时,即:x= ,
当 时,即:x= ,
∴ ,
解得:y1=0舍去,y2=,
故答案为:.
本题考查菱形的性质、折叠的性质、等边三角形的判定和性质以及分式方程等知识,根据折叠和菱形等边三角形的性质进行转化,从而得到关于EG的关系式,是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=2x-10;(2)38
【解析】
(1)利用待定系数法求函数关系式即可;
(2)代入x=24,求出y即可.
【详解】
解:(1)设x、y之间的函数关系式为:y=kx+b,
根据题意得:,
解得:,
∴y与x之间的函数关系式为:y=2x−10;
(2)当x=24时,y=2x−10=48-10=38,
答:应该买38码的鞋.
此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,熟练掌握待定系数法是解题的关键.
25、(1);(2);(3)-2
【解析】
(1)根据代入求出x的解,得到a的不等式即可求解;
(2)联立两函数求出交点坐标,代入即可求解;
(3)根据分式的运算法则得到
得到A,B的方程,即可求解.
【详解】
(1)∵
∴
由题意可知,即,解得.
(2)由题意可知为方程组的解,解方程组得.
所以,,
将代入上式得:.
(3)∵
∴,解得.所以的值为.
此题主要考查一次函数的应用,解题的关键是熟知一次函数的性质、二元一次方程组的解法.
26、见解析.
【解析】
由垂直得到∠EAD=∠FCB=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可.
【详解】
证明:∵AD//BC
∴∠ADE=∠CBF
∵AE⊥AD,CF⊥BC.
∴∠DAE=∠BCF=90°
在△ADE和△CBF中
∵∠DAE=∠BCF,∠ADE=∠CBF,AE=CF.
∴△ADE≌△CBF(AAS)
∴AD=BC
∵AD//BC
∴四边形ABCD是平行四边形.
本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出AD=BC.
题号
一
二
三
四
五
总分
得分
批阅人
平均分(分)
中位数(分)
众数(分)
方差(分2)
七年级
a
85
b
S七年级2
八年级
85
c
100
160
鞋 长
15
18
23
26
鞋 码
20
26
36
42
相关试卷
这是一份2024-2025学年四川省阆中学数学九上开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年平顶山市重点中学数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江西省宜春实验中学数学九上开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。