2024-2025学年四川省遂宁市名校数学九上开学统考试题【含答案】
展开
这是一份2024-2025学年四川省遂宁市名校数学九上开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)要使式子有意义,则实数的取值范围是( )
A.B.C.D.
2、(4分)已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是
A.B.C.D.
3、(4分)若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为( )
A.m=-6,n=-4B.m=O,n=-4
C.m=6,n=4D.m=6,n=-4
4、(4分)如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是( )
A.甲B.乙
C.甲、乙的成绩一样稳定D.无法确定
5、(4分)如图,图中的小正方形的边长为1,到点A的距离为的格点的个数是( )
A.7B.6C.5D.4
6、(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为( )
A.(-,1) B.(-1,) C.(,1) D.(-,-1)
7、(4分)关于的方程有实数根,则整数的最大值是( )
A.6B.7C.8D.9
8、(4分)如图,OC平分∠AOB,点P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是( )
A.2B.3C.4D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果关于的不等式组的整数解仅有,,那么适合这个不等式组的整数,组成的有序数对共有_______个;如果关于的不等式组(其中,为正整数)的整数解仅有,那么适合这个不等式组的整数,组成的有序数对共有______个.(请用含、的代数式表示)
10、(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x > k1x+b的解集为________________
11、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
12、(4分)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件_________(只添一个即可),使四边形ABCD是平行四边形.
13、(4分)如图,中,对角线相交于点,,若要使平行四边形为矩形,则的长度是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.
当t为何值时,四边形ABQP是矩形;
当t为何值时,四边形AQCP是菱形.
15、(8分)阅读下面材料:数学课上,老师出示了这祥一个问题:
如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:
小柏:“通过观察和度量,发现点H是线段EF的中点”。
小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
小亮:“通过观察和度量,发现CO⊥BD”;
小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
请回答:(1)证明FH=EH;
(2)求的值;
(3)若AB=4.MH=,则GE的长度为_____________.
16、(8分)在的正方形网格中(每个小正方形的边长为1),线段在网格中位置如图.
(1)______;
(2)请画出一个,其中在格点上,且三边均为无理数;
(3)画出一个以为边,另两个顶点、也在格点上的菱形,其面积是______.
17、(10分)某直销公司现有名推销员,月份每个人完成销售额(单位:万元),数据如下:
整理上面的数据得到如下统计表:
(1)统计表中的 ; ;
(2)销售额的平均数是 ;众数是 ;中位数是 .
(3)月起,公司为了提高推销员的积极性,将采取绩效工资制度:规定一个基本销售额,在基本销售额内,按抽成;从公司低成本与员工愿意接受两个层面考虑,你认为基本销售额定位多少万元?请说明理由.
18、(10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).
(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)直接写出以C1、B1、B2为顶点的三角形的形状是 .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知分式方程+=,设,那么原方程可以变形为__________
20、(4分)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为丈(丈尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是尺,根据题意,可列方程为__________.
21、(4分)若不等式的正整数解是,则的取值范围是____.
22、(4分)八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为86分;八(2)班54人,平均成绩为80分,则这两个班的平均成绩为__分.
23、(4分)若分式的值是0,则x的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)用适当的方法解下列方程
(1)
(2)
25、(10分)如图,在平面直角坐标系中,A(3,0),B(0,3),过点B画y轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点C画CE⊥OC交直线l于点E.
(1)求∠OBA的度数,并直接写出直线AB的解析式;
(2)若点C的横坐标为2,求BE的长;
(3)当BE=1时,求点C的坐标.
26、(12分)平面直角坐标系中,点O为坐标原点,菱形OABC中的顶点B在x轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点C的坐标为(3,﹣4).
(1)点A的坐标为_____;
(2)若将菱形OABC沿y轴正方向平移,使其某个顶点落在反比例函数y= (x>0)的图象上,则该菱形向上平移的距离为_____.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的性质,被开方数大于等于0,就可以求解.
【详解】
根据题意得:x−2⩾0,
解得x⩾2.
故选:C
此题考查二次根式有意义的条件,解题关键在于掌握其性质
2、D
【解析】
根据菱形的面积列出等式后即可求出y关于x的函数式.
【详解】
由题意可知:10=xy,
∴y=(x>0),
故选:D.
本题考查反比例函数,解题的关键是熟练运用菱形的面积公式,本题属于基础题型.
3、B
【解析】
试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.
考点:原点对称
4、A
【解析】
观察图象可知:甲的波动较小,成绩较稳定.
【详解】
解:从图得到,甲的波动较小,甲的成绩稳定.
故选:A.
本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5、B
【解析】
根据勾股定理、结合图形解答.
【详解】
解:∵,
∴能够成直角三角形的三边应该是1、2、,
∴到点A的距离为的格点如图所示:
共有6个,
故选:B.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么.
6、A
【解析】
试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为
(-,1)故选A.
考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.
7、C
【解析】
方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
【详解】
当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整数,即a=1.
故选C.
8、A
【解析】
试题分析:过点P作PE⊥OA于E,根据角平分线上的点到脚的两边距离相等可得PE=PD,再根据垂线段最短解答.
解:如图,过点P作PE⊥OA于E,
∵OC平分∠AOB,PD⊥OB,
∴PE=PD=3,
∵动点Q在射线OA上运动,
∴PQ≥3,
∴线段PQ的长度不可能是1.
故选A.
点评:本题考查了角平分线上的点到脚的两边距离相等的性质,垂线段最短的性质,是基础题,熟记性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6 pq
【解析】
(1)求出不等式组的解集,根据不等式组的解集和已知得出,,求出a b的值,即可求出答案;
(2)求出不等式组的解集,根据不等式组的解集和已知得出,,即,;结合p,q为正整数,d,e为整数可知整数d的可能取值有p个,整数e的可能取值有q个,即可求解.
【详解】
解:(1)解不等式组,得不等式组的解集为:,
∵关于的不等式组的整数解仅有1,2,
∴,,
∴4≤b<6,0<a≤3,
即b的值可以是4或5,a的值是1或2或3,
∴适合这个不等式组的整数a,b组成的有序数对(a,b)可能是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),
∴适合这个不等式组的整数a,b组成的有序数对(a,b)共6个;
(2)解不等式组(其中,为正整数),
解得:,
∵不等式组(其中p,q为正整数)的整数解仅有c1,c2,…,cn(c1<c2<…<cn),
∴,,
∴,,
∵p,q为正整数
∴整数d的可能取值有p个,整数e的可能取值有q个,
∴适合这个不等式组的整数d,e组成的有序数对(d,e)共有pq个;
故答案为:6;pq.
本题考查了一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的一般步骤.
10、x<-1;
【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.
【详解】
解:两个条直线的交点坐标为(-1,3),且当x<-1时,直线l2在直线l1的上方,故不等式k2x>k1x+b的解集为x<-1.
故本题答案为:x<-1.
本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
11、8或1
【解析】
解:如图所示:①当AE=1,DE=2时,
∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
∴平行四边形ABCD的周长=2(AB+AD)=8;
②当AE=2,DE=1时,同理得:AB=AE=2,
∴平行四边形ABCD的周长=2(AB+AD)=1;
故答案为8或1.
12、BO=DO.
【解析】
解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.
故答案为BO=DO.
13、
【解析】
根据矩形的性质得到OA=OC=OB=OD,可得出结果.
【详解】
解:假如平行四边形ABCD是矩形,
∴OA=OC=OB=OD,
∵OA=3,
∴BD=2OB=1.
故答案为:1.
本题主要考查了矩形的性质,平行四边形的性质等知识点的理解和掌握.
三、解答题(本大题共5个小题,共48分)
14、当时,四边形ABQP为矩形; 当时,四边形AQCP为菱形.
【解析】
当四边形ABQP是矩形时,,据此求得t的值;
当四边形AQCP是菱形时,,列方程求得运动的时间t;
【详解】
由已知可得,,
在矩形ABCD中,,,
当时,四边形ABQP为矩形,
,得
故当时,四边形ABQP为矩形.
由可知,四边形AQCP为平行四边形
当时,四边形AQCP为菱形
即时,四边形AQCP为菱形,解得,
故当时,四边形AQCP为菱形.
本题考查了菱形、矩形的判定与性质解决此题注意结合方程的思想解题.
15、(1)见解析;(2) ;(3)
【解析】
(1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
(2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
(3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.
【详解】
(1)如图1,
连接DE,DF
∵正方形ABCD
∴AD=CD=CB=AB
∠A=∠ADC=∠BCD=∠ABC=90°
∴∠DCE=∠A=90°
∴在ΔFAD和ΔECD中
∴ΔDAF≌ΔDCE(SAS)
∴DF=DE
∵DH⊥EF
∴FH=EH
(2)如图2,连接BH,
∵ΔFAD≌ΔECD
∴∠ADF=∠CDE
∵∠ADC=90°=∠ADF+∠FDC
∴∠EDC+∠FDC=90°
∴∠FDE=90°
∴DH=EF=EH=FH
∵∠FBC=90°
∴BH=EF=EH=FH
∴BH=DH
∴在ΔBHC和ΔDHC中
∴ΔBHC≌ΔDHC(SSS)
∴∠BCH=∠DCH
∴OC⊥BD
∴∠HOB=90°
∵BH=FH,∠BFE =75°
∴∠FBH=∠BFH=75°
∵正方形ABCD
∴∠ABD=45°,∠HBO=30°
∴OH=BH
∴;
(3)解:如图3,连接OA,作MK⊥OA于K.
由(2)可知:A,O,C共线,
∴∠MAK=45°,
∵AM=MB=2,
∵CG∥AB,
由△EHG∽△BCG,可得
本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
16、 (1)AB=
(2)图形见解析
(3)6
【解析】
(1)根据格点图形的性质,结合勾股定理即可解题,
(2)图形如下图,答案不唯一,
(3)答案不唯一,根据菱形的对角线互相垂直平分是作出菱形的关键,菱形的面积可以根据对角线乘积的一半进行求解.
【详解】
(1)AB=
(2)如下图,
(3)如上图,AD=6,BC=2,
∴菱形ABCD的面积=
本题考查了网格图的特征,菱形的性质和面积的求法,属于简单题,熟悉菱形对角线互相垂直平分的性质是解题关键
17、(1),;(2)平均数:,众数:,中位数:;(3)基本销售额定为万元,理由详见解析.
【解析】
(1)根据题干中的数据可得出a,b的值;
(2)按照平均数,中位数,众数的定义分别求得;
(3)根据平均数,中位数,众数的意义回答.
【详解】
解:(1),;
(2)平均数=(10×2+13×3+15+17×7+18+22×4+23×3+24×3+26×4+28×2)÷30=20(万元);
出现次数最多的是17万元,所以众数是17(万元);
把销售额按从小到大顺序排列后,第15,16位都是22万元,所以中位数是22(万元).
故答案为:;;.
(3)基本销售额定为万元.
理由:作为数据的代表,本组数据的平均数、众数、中位数三个量作为基本额都具有合理性.其中中位数为万最大,选择中位数对公司最有利,付出成本最低,对员工来说,这只是个中等水平,可以接受,所以选择中位数作为基本额.
考查学生对平均数、中位数、众数的计算及运用其进行分析的能力.
18、(1)详见解析,点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0);(2)详见解析;(3)等腰直角三角形.
【解析】
(1)利用点平移的坐标特征写出点A1,B1,C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2得到△A2B2C2;
(3)利用勾股定理的逆定理进行判断.
【详解】
解:(1)如图,将△ABC向右平移1个单位长度,再向下平移3个单位长度,则△A1B1C1即为所作;点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0)
(2)如图,每个点都绕原点顺时针旋转90°,则△A2B2C2即为所作.
(3)∵C1B12=5,C1B22=5,B1B22=10,
∴C1B12+C1B22=B1B22,C1B1=C1B2,
∴以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.
故答案为等腰直角三角形.
此题考查平移和旋转的知识点,结合平移和旋转的规则即可作图求解,第三问考查勾股定理的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、=
【解析】
【分析】运用整体换元法可得到结果.
【详解】设,则分式方程+=,可以变形为=
故答案为:=
【点睛】本题考核知识点:分式方程.解题关键点:掌握整体换元方法.
20、
【解析】
试题解析:设由题意可得:.
故答案为.
21、9≤a<1
【解析】
解不等式3x−a≤0得x≤,其中,最大的正整数为3,故3≤<4,从而求解.
【详解】
解:解不等式3x−a≤0,得x≤,
∵不等式的正整数解是1,2,3,
∴3≤<4,
解得9≤a<1.
故答案为:9≤a<1.
本题考查了一元一次不等式的解法.先解含字母系数的不等式,再根据正整数解的情况确定字母的取值范围.
22、82.1
【解析】
根据加权平均数公式,用(1)、(2)班的成绩和除以两班的总人数即可得.
【详解】
(分,
故答案为:82.1.
本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.若个数,,,,的权分别是,,,,,则叫做这个数的加权平均数.
23、3
【解析】
根据分式为0的条件解答即可,
【详解】
因为分式的值为0,
所以∣x∣-3=0且3+x≠0,
∣x∣-3=0,即x=3,
3+x≠0,即x≠-3,
所以x=3,
故答案为:3
本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)或.
【解析】
(1)先整理成一元二次方程的一半形式,然后用求根公式法求解即可;
(2)先移项,然后用配方法求解即可.
【详解】
(1)原方程整理为一般式为:,
,,,
,
则,
,;
(2),
,
,
,
或 ,
或.
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
25、(3)直线AB的解析式为:y=﹣x+3;(3)BE=3;(3)C的坐标为(3,3).
【解析】
(3)根据A(3,0),B(0,3)可得OA=OB=3,得出△AOB是等腰直角三角形,∠OBA=45°,进而求出直线AB的解析式;
(3)作CF⊥l于F,CG⊥y轴于G,利用ASA证明Rt△OGC≌Rt△EFC(ASA),得出EF=OG=3,那么BE=3;
(3)设C的坐标为(m,-m+3).分E在点B的右侧与E在点B的左侧两种情况进行讨论即可.
【详解】
(3)∵A(3,0),B(0,3),∴OA=OB=3.∵∠AOB=90°,
∴∠OBA=45°,∴直线AB的解析式为:y=﹣x+3;
(3)作CF⊥l于F,CG⊥y轴于G,∴∠OGC=∠EFC=90°.∵点C的横坐标为3,点C在y=﹣x+3上,∴C(3,3),CG=BF=3,OG=3.∵BC平分∠OBE,
∴CF=CG=3.∵∠OCE=∠GCF=90°,∴∠OCG=∠ECF,
∴Rt△OGC≌Rt△EFC(ASA),∴EF=OG=3,∴BE=3;
(3)设C的坐标为(m,﹣m+3).
当E在点B的右侧时,由(3)知EF=OG=m﹣3,
∴m﹣3=﹣m+3,
∴m=3,
∴C的坐标为(3,3);
当E在点B的左侧时,同理可得:m+3=﹣m+3,
∴m=3,
∴C的坐标为(3,3).
此题考查一次函数,等腰直角三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线
26、(1)(3,4)
(2)2或8
【解析】
(1)根据菱形的对称性,得A(3,4)
(2)则反比例函数为 则B(6,0),若点B向上平移到反比例函数上.则B(6,2),即向上平移2个单位;若点C在反比例函数上,则C(3,4),即向上平移8个单位.故该菱形向上平移的距离为2或8.
题号
一
二
三
四
五
总分
得分
销售额
人数
相关试卷
这是一份2024-2025学年四川省遂宁市安居育才中学数学九上开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省莘县联考九上数学开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。