终身会员
搜索
    上传资料 赚现金

    2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】第1页
    2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】第2页
    2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】

    展开

    这是一份2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长是( )
    A.6B.5C.4D.3
    2、(4分)小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8A.y=0.5t(8C.y=0.5t+8(83、(4分)一次函数y=2x–6的图象不经过第( )象限.
    A.一 B.二 C.三 D.四
    4、(4分)下列四个二次根式中,是最简二次根式的是( )
    A.B.C.D.
    5、(4分)在函数y=中,自变量x的取值范围是( )
    A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣3
    6、(4分)10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告诉与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是( )
    A.2B.C.4D.
    7、(4分)函数的图象如图所示,则关于的不等式的解集是( )
    A.B.
    C.D.
    8、(4分)如图所示,下列结论中不正确的是( )
    A.a组数据的最大数与最小数的差较大B.a组数据的方差较大
    C.b组数据比较稳定D.b组数据的方差较大
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.
    10、(4分)分解因式:m2(a﹣2)+m(2﹣a)= .
    11、(4分)在矩形ABCD中,AB=2,AD=3,点P是BC上的一个动点,连接AP、DP,则AP+DP的最小值为_____.
    12、(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1000米,甲超出乙150米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点还有_____米.
    13、(4分)已知xy=﹣1,x+y=2,则x3y+x2y2+xy3=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在梯形中,,点在直线上,联结,过点作的垂线,交直线与点,

    (1)如图1,已知,:求证:;
    (2)已知:,
    ① 当点在线段上,求证:;
    ② 当点在射线上,①中的结论是否成立?如果成立,请写出证明过程;如果不成立,简述理由.
    15、(8分)如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.
    (1)求证B′E=BF;
    (2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给出证明.
    16、(8分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF
    (1)补充完成图形;
    (2)若EF∥CD,求证:∠BDC=90°.
    17、(10分)如图所示,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上,判断△ABC和△DEF是否相似,并说明理由.
    18、(10分)计算
    (1)
    (2)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) “6l8购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售时标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打_________折
    20、(4分)函数y=中自变量x的取值范围是______.
    21、(4分)点 P(1,﹣3)关于原点对称的点的坐标是_____.
    22、(4分)如图,在菱形中,,的垂直平分线交对角线于点,垂足为点,连接,,则______.
    23、(4分)直线y=x+2与x轴的交点坐标为___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.
    (1)写出点Q的坐标是________;
    (2)若把点Q向右平移个单位长度,向下平移个单位长度后,得到的点落在第四象限,求的取值范围;
    (3)在(2)条件下,当取何值,代数式取得最小值.
    25、(10分)(1)计算:.
    (2)已知、、是的三边长,且满足,,,试判断该三角形的形状.
    26、(12分)已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(1,0),点B的坐标为(1,8),已知直线AC与双曲线y=(m≠0)在第一象限内有一交点Q(5,n).
    (1)求直线AC和双曲线的解析式;
    (2)若动点P从A点出发,沿折线AO→OC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与的运动时间t秒的函数关系式,并求当t取何值时S=1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    解:,是的中点,

    故选:.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    2、D
    【解析】
    试题分析:由题意知小高从家去上班花费的时间为12分钟,当8考点:求函数关系式
    点评:本题考查求函数关系式,做此类题的关键是审清楚题,找出题中各量之间的关系
    3、B
    【解析】分析:根据一次函数图象与系数的关系的关系解答即可.
    详解:∵2>0,-6<0,
    ∴一次函数y=2x–6的图象经过一、三、四象限,不经过第二象限.
    故选B.
    点睛:本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
    4、D
    【解析】
    根据最简二次根式的定义,可得答案.
    【详解】
    A. 被开方数含能开得尽方的因数=3,故A不符合题意;
    B. 被开方数含分母,故B不符合题意;
    C. 被开方数含能开得尽方的因数=2,故C不符合题意;
    D. 被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;
    故选:D
    此题考查最简二次根式,解题关键在于掌握运算法则
    5、B
    【解析】
    根据二次根式有意义的条件列出不等式即可.
    【详解】
    解:根据题意得:x+3≥0
    解得:x≥-3
    所以B选项是正确的.
    本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    6、B
    【解析】
    先设报3的人心里想的数为x,利用平均数定义表示报5的人心里想的数;报7的人心里想的数;报9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.
    【详解】
    设报3的人心里想的数是x
    ∵报3与报5的两个人报的数的平均数是4
    ∴报5的人心里想的数应该是8-x
    于是报7的人心里想的数应该是12-(8-x)=4+x
    报9的人心里想的数应该是16-(4+x)=12-x
    报1的人心里想的数应该是20-(12-x)=8+x
    报3的人心里想的数应该是4-(8+x)=-4-x
    所以x=-4-x,解得x=-2
    故答案选择B.
    本题属于阅读理解和探查规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.
    7、C
    【解析】
    解一元一次不等式ax+b>0(或<0)可以归结为以下两种:(1)从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;(2)从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有点的横坐标所构成的集合。
    【详解】
    观察图像,可知在x轴的上方所有x的取值,都满足y>0,结合直线过点(-2,0)
    可知当x>-2时,都有y>0
    即x>-2时,一元一次不等式kx+b>0.
    故选:C
    此题考查一次函数与一元一次不等式,解题关键在于结合函数图象求解
    8、D
    【解析】
    方差可以衡量数据稳定性,数据越稳定,方差越小.由此可得答案.
    【详解】
    解:A、a组数据的最大数与最小数的差为30-10=20,b组数据的最大数与最小数的差是20-10=10,所以a组数据的最大数与最小数的差较大,故选项A正确;
    B、由图中可以看出,a组数据最大数与最小数的差较大,不稳定,所以a组数据的方差较大,故选项B正确;
    C和D、b组数据比较稳定,即其方差较小.故选项C正确,选项D的说法错误;
    故选D.
    本题涉及方差和极差的相关概念,比较简单,熟练掌握方差的性质是关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、640
    【解析】
    首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.
    【详解】
    解:设这个零件的实际长是xcm,根据题意得:

    解得:x=640,
    则这个零件的实际长是640cm.
    故答案为:640
    此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.
    10、m(a﹣2)(m﹣1)
    【解析】
    试题分析:将m2(a﹣2)+m(2﹣a)适当变形,然后提公因式m(a﹣2)即可.
    解:m2(a﹣2)+m(2﹣a),
    =m2(a﹣2)﹣m(a﹣2),
    =m(a﹣2)(m﹣1).
    11、1
    【解析】
    作点D关于BC的对称点D',连接AD',PD',依据AP+DP=AP+PD'≥AD',即可得到AP+DP的最小值等于AD'的长,利用勾股定理求得AD'=1,即可得到AP+DP的最小值为1.
    【详解】
    解:如图,作点D关于BC的对称点D',连接AD',PD',则DD'=2DC=2AB=4,PD=PD',
    ∵AP+DP=AP+PD'≥AD',
    ∴AP+DP的最小值等于AD'的长,
    ∵Rt△ADD'中,AD'= ==1,
    ∴AP+DP的最小值为1,
    故答案为:1.
    本题考查的是最短线路问题及矩形的性质,熟知两点之间线段最短的知识是解答此题的关键.
    12、50
    【解析】
    乙从开始一直到终点,行1000米用时200秒,因此乙的速度为1000÷200=5米/秒,甲停下来,乙又走150÷5=30秒才与甲第一次会和,第一次会和前甲、乙共同行使150-30=120秒,从起点到第一次会和点的距离为5×150=750米,因此甲的速度为750÷120=6.25米/秒,甲行完全程的时间为1000÷6.25=160秒,甲到终点时乙行驶时间为160+30=190秒,因此乙距终点还剩200-190=10秒的路程,即10×5=50米.
    【详解】
    乙的速度为:1000÷200=5米/秒,从起点到第一次会和点距离为5×150=750米,
    甲停下来到乙到会和点时间150÷5=30秒,之前行驶时间150﹣30=120秒,
    甲的速度为750÷120=6.25米/秒,
    甲到终点时乙行驶时间1000÷6.25+30=190秒,
    还剩10秒路程,即10×5=50米,
    故答案为50米.
    考查函数图象的意义,将行程类实际问题和图象联系起来,理清速度、时间、路程之间的关系是解决问题关键.
    13、-2
    【解析】
    先提公因数法把多项式x3y+x2y2+xy3因式分解,再根据完全平方公式因式分解即可求解.
    【详解】
    解:∵xy=﹣1,x+y=2,
    ∴x3y+x2y2+xy3=
    代入数据,原式=
    故答案为:.
    本题考查了因式分解,先提公因式,然后再套完全平方公式即可求解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;
    (2)①证明见解析;②结论仍然成立,证明见解析.
    【解析】
    (1)过F作FM⊥AD,交AD的延长线于点M,通过AAS证明△ABE≌△EMF,根据全等三角形的性质即可得出AB=AD;
    (2)①在AB上截取AG=AE,连接EG.通过ASA证明△BGE≌△EDF,根据全等三角形的性质即可得出BE=EF;

    【详解】
    (1)如图:
    过F作FM⊥AD,交AD的延长线于点M,
    ∴∠M=90°,
    ∵∠BEF=90°,
    ∴∠AEB+MEF=90°,
    ∵∠A=90°,
    ∴∠ABE+∠AEB=90°,
    ∴∠MEF=∠ABE,
    在△ABE和△EMF中,

    ∴△ABE≌△EMF(AAS)
    ∴AB=ME,AE=MF,
    ∵AM∥BC,∠C=45°,
    ∴∠MDF=∠C=45°,
    ∴∠DFM=45°,
    ∴DM=FM,
    ∴DM=AE,
    ∴DM+ED=AE+ED,
    即AD=EM,
    ∴AB=AD;
    (2)①证明:如图,
    在AB上截取AG=AE,连接EG,则∠AGE=∠AEG,
    ∵∠A=90°,∠A+∠AGE+∠AEG=180°,
    ∴∠AGE=45°,
    ∴∠BGE=135°,
    ∵AD∥BC,
    ∴∠C+∠D=180°,
    又∵∠C=45°,
    ∴∠D=135°,
    ∴∠BGE=∠D,
    ∵AB=AD,AG=AE,
    ∴BG=DE,
    ∵EF⊥BE,
    ∴∠BEF=90°,
    又∵∠A+∠ABE+∠AEB=180°,
    ∠AEB+∠BEF+∠DEF=180°,
    ∠A=90°,
    ∴∠ABE=∠DEF,
    在△BGE与△EDF中,

    ∴△BGE≌△EDF(ASA),
    ∴BE=EF;
    ②结论仍然成立,证明如下,
    如图:
    延长BA到点G,使BG=ED,连接EG,
    则△EAG是等腰直角三角形,
    ∴∠EGB=45°,
    ∵ED∥BC,∠C=45°,
    ∴∠FDE=45°,
    ∴∠FDE=45°,
    ∴∠EGB=∠FDE,
    ∵∠A=90°,
    ∴∠AEB+∠ABE=90°,
    ∵EF⊥EB,
    ∴∠FED+∠AEB=90°,
    ∴∠AEB=∠FED,
    在△BGE与△EFD中,

    ∴△BGE≌△EDF(ASA),
    ∴BE=EF.
    本题是四边形综合题,考查了等腰直角三角形的性质,梯形的性质,全等三角形的判定和性质,综合性较强,有一定的难度.添加适当的辅助线构造全等三角形是解题的关键.
    15、(1)证明见解析;
    (1)a,b,c三者存在的关系是a+b>c,理由见解析.
    【解析】
    (1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;
    (1)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.
    证明:(1)由题意得B′F=BF,∠B′FE=∠BFE,
    在矩形ABCD中,AD∥BC,
    ∴∠B′EF=∠BFE,
    ∴∠B′FE=∠B'EF,
    ∴B′F=BE,
    ∴B′E=BF;
    解:(1)答:a,b,c三者关系不唯一,有两种可能情况:
    (ⅰ)a,b,c三者存在的关系是a1+b1=c1.
    证明:连接BE,则BE=B′E,
    由(1)知B′E=BF=c,
    ∴BE=c.
    在△ABE中,∠A=90°,
    ∴AE1+AB1=BE1,
    ∵AE=a,AB=b,
    ∴a1+b1=c1;
    (ⅱ)a,b,c三者存在的关系是a+b>c.
    证明:连接BE,则BE=B′E.
    由(1)知B′E=BF=c,
    ∴BE=c,
    在△ABE中,AE+AB>BE,
    ∴a+b>c.
    “点睛”此题以证明和探究结论形式来考查矩形的翻折、等角对等边、三角形全等、勾股定理等知识.第一,较好考查学生表述数学推理和论证能力,第(1)问重点考查了学生逻辑推理的能力,主要利用等角对等边、翻折等知识来证明;第二,试题呈现显示了浓郁的探索过程,试题设计的起点低,图形也很直观,也可通过自已动手操作,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,第(1)问既考查了学生对勾股定理掌握的程度又考查学生的数学猜想和探索能力,这对于培养学生创新意识和创新精神十分有益;第三,解题策略多样化在本题中得到了充分的体现.
    16、见解析
    【解析】
    试题分析:(1)根据题意补全图形,如图所示;
    (2)由旋转的性质得到为直角,由EF与CD平行,得到为直角,利用SAS得到与全等,利用全等三角形对应角相等即可得证.
    试题解析:(1)补全图形,如图所示;

    (2)由旋转的性质得:
    ∴∠DCE+∠ECF=,
    ∵∠ACB=,
    ∴∠DCE+∠BCD=,
    ∴∠ECF=∠BCD,
    ∵EF∥DC,
    ∴∠EFC+∠DCF=,
    ∴∠EFC=,
    在△BDC和△EFC中,

    ∴△BDC≌△EFC(SAS),
    ∴∠BDC=∠EFC=.
    17、△ABC和△DEF相似,理由详见解析
    【解析】
    首先根据小正方形的边长,求出△ABC和△DEF的三边长,然后判断它们是否对应成比例即可.
    【详解】
    △ABC和△DEF相似,理由如下:
    由勾股定理,得:AC=,AB=2,BC=5,
    DF=2,DE=4, EF=2,

    所以,△ABC∽△DEF.
    本题考查相似三角形的判定,找准对应边成比例即可.
    18、(1)(2)
    【解析】
    (1)先化成最简二次根式,再合并同类二次根式即可;
    (2)根据多项式除以单项式法则展开,再进行计算即可.
    【详解】
    解:(1)原式=
    =
    (2)原式=
    =
    本题考查了二次根式的加减混合运算的应用,主要考查学生的计算能力.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、八.
    【解析】
    设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.
    【详解】
    解:设打了x折,
    由题意得360×0.1x-240≥240×20%,
    解得:x≥1.
    则要保持利润不低于20%,至多打1折.
    故答案为:八.
    本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.
    20、x⩽2且x≠−1.
    【解析】
    根据被开方数大于等于0,分母不等于0列式计算即可得解.
    【详解】
    由题意得,2−x⩾0且x+1≠0,
    解得x⩽2且x≠−1.
    故答案为:x⩽2且x≠−1.
    此题考查函数自变量的取值范围,解题关键在于掌握各性质定义.
    21、(-1,3)
    【解析】
    根据关于原点对称的点,横坐标与纵坐标都互为相反数可知:点P(1,-3)关于原点的对称点的坐标.
    【详解】
    解:∵关于原点对称的点,横坐标与纵坐标都互为相反数,
    ∴点P(1,-3)关于原点的对称点的坐标为(-1,3).
    故答案为:(-1,3).
    本题考查了关于原点对称的点,横坐标与纵坐标都互为相反数,难度较小.
    22、.
    【解析】
    首先根据题意可得,即可得,根据,可得,再利用为的垂直平分线,进而计算的度数.
    【详解】
    由题可知,则,根据,可知,,又为的垂直平分线,.即,则,即.
    本题只要考查菱形的性质,难度系数较低,应当熟练掌握.
    23、(-2,0)
    【解析】
    令纵坐标为0代入解析式中即可.
    【详解】
    当y=0时,0=x+2,解得:x=-2,
    ∴直线y=x+2与x轴的交点坐标为(-2,0).
    点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.
    二、解答题(本大题共3个小题,共30分)
    24、(1)Q(-3,1)(2)a>3(3)0
    【解析】
    (1)如图,作PA⊥x轴于A,QB⊥x轴于B,则∠PAO=∠OBQ=90°,证明△OBQ≌△PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;
    (2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;
    (3)由(2)得,m=-3+a,n=1-a,代入所求式子得 ,继而根据偶次方的非负性即可求得答案 .
    【详解】
    (1)如图,作PM⊥x轴于A,QN⊥x轴于B,则∠PAO=∠OBQ=90°,
    ∴∠P+∠POA=90°,
    由旋转的性质得:∠POQ=90°,OQ=OP,
    ∴∠QOB+∠POA=90°,
    ∴∠QOB=∠P,
    ∴△OBQ≌△PAO(AAS),
    ∴OB=PA,QB=OA,
    ∵点P的坐标为(1,3),
    ∴OB=PA=3,QB=OA=1,
    ∴点Q的坐标为(-3,1);
    (2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,
    得到的点M的坐标为(-3+a,1-a),
    而M在第四象限,
    所以,
    解得a>3,
    即a的范围为a>3;
    (3)由(2)得,m=-3+a,n=1-a,



    ∵,
    ∴当a=4时,代数式的最小值为0.
    本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.
    25、(1)-4;(2)为且.
    【解析】
    (1)根据二次根式的性质,整数指数幂的性质化简计算即可.
    (2)利用勾股定理的逆定理解决问题即可.
    【详解】
    (1)解:原式=
    (2)解:,;

    为且
    本题考查勾股定理的逆定理,零指数幂,二次根式的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    26、(1)直线AC的解析式为:,双曲线为:;(2),当t=2.5秒或t=7秒时,S=1.
    【解析】
    (1)设直线的解析式为.将、两点代入其中,即利用待定系数法求一次函数解析式;然后利用一次函数图象上点的坐标特征,将点代入函数关系式求得值;最后将点代入双曲线的解析式,求得值,即可求得双曲线的解析式;
    (2)分类讨论:当时,;当时,.
    【详解】
    解:(1)设直线的解析式为,过、,

    解得:,
    直线的解析式为,
    又在直线上,

    又双曲线过,

    双曲线的解析式为:;
    (2)当时,,
    过作,垂足为,如图1,
    ,,

    当时,
    解得,
    当时,,
    过作,垂足为,如图2
    ,,

    当时,,
    解得,
    综上,,
    当秒时,的面积不存在,
    当秒或秒时,.
    此题主要考查反比例函数和一次函数的交点问题,分类讨论是本题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年陕西省宝鸡市眉县营头中学数学九年级第一学期开学调研模拟试题【含答案】:

    这是一份2024-2025学年陕西省宝鸡市眉县营头中学数学九年级第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】:

    这是一份2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map