终身会员
搜索
    上传资料 赚现金

    2024-2025学年天津市南开区育红中学数学九上开学复习检测模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年天津市南开区育红中学数学九上开学复习检测模拟试题【含答案】第1页
    2024-2025学年天津市南开区育红中学数学九上开学复习检测模拟试题【含答案】第2页
    2024-2025学年天津市南开区育红中学数学九上开学复习检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年天津市南开区育红中学数学九上开学复习检测模拟试题【含答案】

    展开

    这是一份2024-2025学年天津市南开区育红中学数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若分式有意义,则的取值范围是( )
    A.B.C.D.
    2、(4分)如图,直线y=x+与y=kx-1相交于点P,点P的纵坐标为,则关于x的不等式x+>kx-1的解集在数轴上表示正确的是( )
    A.B.C.D.
    3、(4分)在平面直角坐标系内,已知点A的坐标为(-6,0),直线l:y=kx+b不经过第四象限,且与x轴的夹角为30°,点P为直线l上的一个动点,若点P到点A的最短距离是2,则b的值为( )
    A. 或B.C.2D.2或10
    4、(4分)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是( )
    ABCD
    5、(4分)已知函数y=kx-k的图象如图所示,则k的取值为( )
    A.k<0B.k>0C.k≥0D.k≤0
    6、(4分)如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是( )
    A.16B.15C.14D.13
    7、(4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90˚,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
    A.6B.5C.4D.3
    8、(4分)若五箱苹果的质量(单位:)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是( )
    A.18和18B.19和18C.20和18D.20和19
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知则第个等式为____________.
    10、(4分)如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.
    11、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.
    12、(4分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=_____cm.
    13、(4分)若有增根,则m=______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.
    15、(8分)边长为的正方形中,点是上一点,过点作交射线于点,且,则线段的长为?
    16、(8分)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
    (1)EA是∠QED的平分线;
    (1)EF1=BE1+DF1.
    17、(10分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形
    (1)以A为顶点的平行四边形;
    (2)以A为对角线交点的平行四边形.
    18、(10分)计算
    (1)
    (2);
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为___.
    20、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
    21、(4分)如图,在中,,为的中线,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、.若,,则________.
    22、(4分)一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s)的函数关系式是s=9t+,则汽车行驶380m需要时间是______s.
    23、(4分)若关于x的一元二次方程(k﹣1)x2+3x﹣1=0有实数根,则k的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,Rt△ABO的顶点A是双曲线y1=与直线y2=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.
    (1)求这两个函数的解析式;
    (2)求△AOC的面积.
    (3)直接写出使y1>y2成立的x的取值范围
    25、(10分)某校为了解学生“体育课外活动”的锻炼效果,在期末结束时,随机从学校1200名学生中抽取了部分学生的体育测试成绩绘制了条形统计图,请根据统计图提供的信息,回答下列问题.
    (1)这次抽样调查共抽取了多少名学生的体育测试成绩进行统计?
    (2)随机抽取的这部分学生中男生体育成绩的众数是多少?女生体育成绩的中位数是多少?
    (3)若将不低于40分的成绩评为优秀,请估计这1200名学生中成绩为优秀的学生大约是多少?
    26、(12分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.
    (1)求证:四边形BMDN是菱形;
    (2)若AB=4,AD=8,求MD的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据分式有意义的条件:分母不等于0,即可求解.
    【详解】
    解:根据题意得:x-1≠0,
    解得:x≠1.
    故选:A.
    此题考查分式有意义的条件,正确理解条件是解题的关键.
    2、A
    【解析】
    先把代入,得出,再观察函数图象得到当时,直线都在直线的上方,即不等式的解集为,然后用数轴表示解集.
    【详解】
    把代入,得
    ,解得.
    当时,,
    所以关于x的不等式的解集为,
    用数轴表示为:

    故选A.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.
    3、A
    【解析】
    直线l:y=kx+b不经过第四象限,可能过一、二、三象限,与x轴的夹角为30°,又点A的坐标为(-6,0),因此两种情况,分别画出每种情况的图形,结合图形,利用已学知识进行解答.
    【详解】
    解:如图:分两种情况:
    (1)在Rt△ABP1中,AP1=2,∠ABP1=30°,
    ∴AB=2AP1=4,
    ∴OB=OA-AB=6-4=2,
    在Rt△BCO中,∠CBO=30°,∴OC=tan30°×OB=,即:b=;
    (2)同理可求得AD=4,OD=OA+AD=10,
    在Rt△DOE中,∠EDO=30°,∴OE=tan30°×OD=,即:b=;
    故选:A.
    考查一次函数的图象和性质、直角三角形的边角关系等知识,分类讨论得出答案,注意分类的原则既不重复,又不能遗漏,可根据具体问题合理灵活地进行分类.
    4、C
    【解析】
    试题分析:由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.
    解:因为开始以正常速度匀速行驶,所以s随着t的增加而增加,随后由于故障修车,此时s不发生改变,再之后加快速度匀驶,s随着t的增加而增加,综上可得S先缓慢增加,再不变,再加速增加.
    故选:C.
    考点:函数的图象.
    5、A
    【解析】
    根据一次函数的性质:当k<0时,函数y=kx-k中y随着x的增加而减小,可确定k的取值范围,再根据图像与y轴的交点即可得出答案.
    【详解】
    由图象知:函数y=kx-k中y随着x的增大而减小,
    所以k<0,
    ∵交与y轴的正半轴,
    ∴-k>0,
    ∴k<0,
    故选:A.
    考查了一次函数的图象与系数的关系,解题的关键是了解图象与系数的关系,难度不大.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.
    6、B
    【解析】
    根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,
    ∴∠EAO=∠FCO,
    在△AEO和△CFO中,

    ∴△AEO≌△CFO(ASA),
    ∴AE=CF,OE=OF=2,
    ∴DE+CF=DE+AE=AD=6,
    ∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=1.
    故选B.
    本题考查平行四边形性质,全等三角形的性质和判定的应用,解题的关键是求出DE+CF的长和求出OF长.
    7、C
    【解析】
    设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
    【详解】
    解:设BN=x,由折叠的性质可得DN=AN=9-x,
    ∵D是BC的中点,
    ∴BD=3,
    在Rt△NBD中,x2+32=(9-x)2,
    解得x=1.
    即BN=1.
    故选:C.
    此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.
    8、B
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    【详解】
    把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.
    故选:B.
    本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据21-20=20,22-21=21,23-22=22,可得被减数、减数、差都是以2为底数的幂的形式,减数和差的指数相同,被减数的指数比减数和差的指数都多1,第n个等式是:2n−2n−1=2n−1。
    10、10cm
    【解析】
    将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.
    【详解】
    解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,
    ∴小蚂蚁爬行的最短路程为此时AB的长
    ∵圆柱体的高为8cm,
    ∴BC=8cm
    在Rt△ABC中,AB=cm
    故答案为:10cm.
    此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.
    11、(﹣5,4).
    【解析】
    首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.
    【详解】
    由题知A(3,0),B(-2,0),D在y轴上,
    ∴AB=3-(-2)=5,OA=3,BO=2,
    由菱形邻边相等可得AD=AB=5,
    在Rt△AOD中,由勾股定理得:
    OD==4,
    由菱形对边相等且平行得CD=BA=5,
    所以C(-5,4).
    故答案为(﹣5,4).
    本题考查了菱形的性质及坐标与图形的性质,运用勾股定理求出OD的长是解答本题的关键.
    12、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.
    【详解】
    解:∵∠BCA=90°,D是AB的中点,
    ∴AB=2CD=12cm,
    ∵E、F分别是AC、BC的中点,
    ∴EF=AB=1cm,
    故答案为1.
    本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    13、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.
    【详解】
    方程两边都乘(x-3),得
    x-1(x-3)=1-m,
    ∵方程有增根,
    ∴最简公分母x-3=0,即增根是x=3,
    把x=3代入整式方程,得m=-1.
    故答案是:-1.
    解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    三、解答题(本大题共5个小题,共48分)
    14、甲建筑物的高度约为,乙建筑物的高度约为.
    【解析】
    分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
    详解:如图,过点作,垂足为.
    则.
    由题意可知,,,,,.
    可得四边形为矩形.
    ∴,.
    在中,,
    ∴.
    在中,,
    ∴.
    ∴ .
    ∴.
    答:甲建筑物的高度约为,乙建筑物的高度约为.
    点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
    15、或
    【解析】
    分两种情况讨论,①过点作,垂直为,交于,先求出N是CF的中点,然后得出,根据矩形和等腰三角形的性质得出即可求出答案;②过点作,垂直为,交于,根据正方形和全等三角形的性质得出,然后再求出,,,,最终即可求出.
    【详解】
    解:①过点作,垂直为,交于,

    是的中点.

    .
    又四边形是矩形,为等腰直角三角形,

    .
    ②过点作,垂直为,交于.
    正方形关于对称,


    又,


    .
    .
    又,



    .
    综上所述,的长为或
    本题主要考查的是矩形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,掌握本题的辅助线的法则是解题的关键.
    16、详见解析.
    【解析】
    (1)、直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;
    (1)、利用(1)中所求,再结合勾股定理得出答案.
    【详解】
    (1)、∵将△ADF绕点A顺时针旋转90°后,得到△ABQ, ∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,
    ∴△AQE≌△AFE(SAS), ∴∠AEQ=∠AEF, ∴EA是∠QED的平分线;
    (1)、由(1)得△AQE≌△AFE, ∴QE=EF, 在Rt△QBE中,
    QB1+BE1=QE1, 则EF1=BE1+DF1.
    考点:(1)、旋转的性质;(1)、正方形的性质.
    17、(1)见解析;(2)见解析
    【解析】
    (1)直接利用平行四边形的性质分析得出答案;
    (2)直接利用菱形的性质得出符合题意的答案.
    【详解】
    解:(1)如图所示:平行四边形ABCD即为所求;
    (2)如图所示:平行四边形DEFM即为所求.
    此题考查应用设计与作图,正确应用网格分析是解题关键.
    18、(1)+;(2)x1=5,x2=−1.
    【解析】
    (1)先算乘法,再合并同类二次根式即可;
    (2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    解:(1)原式=3−+2−2
    =+;
    (2)x2−4x−5=0,
    (x−5)(x+1)=0,
    x−5=0,x+1=0,
    x1=5,x2=−1.
    本题考查了二次根式的混合运算和解一元二次方程,能正确运用运算法则进行计算是解此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.
    【详解】
    解:在Rt△BCE中,由勾股定理得,
    CE===1.
    ∵BE=DE=3,AE=CE=1,
    ∴四边形ABCD是平行四边形.
    四边形ABCD的面积为BC×BD=4×(3+3)=2.
    故答案为2.
    本题考查了平行四边形的判定与性质,关键是利用勾股定理得出CE的长,利用对角线互相平分的四边形是平行四边形,利用平行四边形的面积公式.
    20、2
    【解析】
    解:∵四边形ABCD是菱形,AC=2,BD=,
    ∴∠ABO=∠CBO,AC⊥BD.
    ∵AO=1,BO=,
    ∴AB=2,
    ∴sin∠ABO==
    ∴∠ABO =30°,
    ∴∠ABC=∠BAC =60°.
    由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
    ∵∠ABO=∠CBO,
    ∴BE=BF,
    ∴△BEF是等边三角形,
    ∴∠BEF=60°,
    ∴∠OEF=60°,
    ∴∠AEO=60°,
    ∵∠BAC =60°.
    ∴△AEO是等边三角形,,
    ∴AE=OE,
    ∴BE=AE,同理BF=FC,
    ∴EF是△ABC的中位线,
    ∴EF=AC=1,AE=OE=1.
    同理CF=OF=1,
    ∴五边形AEFCD的周长为=1+1+1+2+2=2.
    故答案为2.
    21、5
    【解析】
    首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13-x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.
    【详解】
    解:∵,,
    ∴四边形是平行四边形,
    ∵,
    ∴,
    又∵点是中点,
    ∴,
    ∴四边形是菱形,
    设,则,,
    ∵在中,,
    ∴,即,
    解得:,
    即.
    故答案是:5.
    本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.
    22、20
    【解析】
    令S=380m,即可求出t的值.
    【详解】
    解:当s=380m时,9t+t2=380,
    整理得t2+18t﹣760=0,
    即(t﹣20)(t+38)=0,
    解得t1=20,t2=﹣38(舍去).
    ∴行驶380米需要20秒,
    故答案为:20
    本题主要考查根据函数值求自变量的值,能够利用方程的思想是解题的关键.
    23、且
    【解析】
    试题解析:由题意知,
    ∵方程有实数根,

    ∴且
    故答案为且
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=﹣,y=﹣x+2;(2)3;(1)-1<x<0或x>1
    【解析】
    【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为1且为负数,由此即可求出k;
    (2)由函数的解析式组成方程组,解之求得A、C的坐标,然后根据S△AOC=S△ODA+S△ODC即可求出;
    (1)根据图象即可求得.
    【详解】解:(1)设A点坐标为(x,y),且x<0,y>0,
    则S△ABO=•|BO|•|BA|=•(﹣x)•y=,
    ∴xy=﹣1,
    又∵y=,
    即xy=k,
    ∴k=﹣1.
    ∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;
    (2)由y=﹣x+2,
    令x=0,得y=2.
    ∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),
    ∵A、C在反比例函数的图象上,
    ∴,
    解得 ,,
    ∴交点A(﹣1,1),C为(1,﹣1),
    ∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(1+1)=3.
    (1)-1<x<0或x>1 .
    【点睛】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.也考查了函数和不等式的关系.
    25、 (1)100名;(2)男生体育成绩的众数40分;女生体育成绩的中位数是40分;(3)756名.
    【解析】
    (1)将条形图中各分数的人数相加即可得;
    (2)根据众数和中位数的定义求解可得;
    (3)总人数乘以样本中优秀人数所占比例可得.
    【详解】
    解:(1)抽取的学生总人数为5+7+10+15+15+12+13+10+8+5=100(名);
    (2)由条形图知随机抽取的这部分学生中男生体育成绩的众数40分,
    ∵女生总人数为7+15+12+10+5=49,其中位数为第25个数据,
    ∴女生体育成绩的中位数是40分;
    (3)估计这1200名学生中成绩为优秀的学生大约是1200×=756(名).
    本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了平均数、中位数、众数的认识.
    26、(1)证明见解析;(2)MD长为1.
    【解析】
    (1)利用矩形性质,证明BMDN是平行四边形,再结合MN⊥BD,证明BMDN是菱形.
    (2)利用BMDN是菱形,得BM=DM,设,则,在中使用勾股定理计算即可.
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴AD∥BC,∠A=90°,
    ∴∠MDO=∠NBO,∠DMO=∠BNO,
    ∵BD的垂直平分线MN
    ∴BO=DO,
    ∵在△DMO和△BNO中
    ∠MDO=∠NBO,BO=DO,∠MOD=∠NOB
    ∴△DMO ≌△BNO(AAS),
    ∴OM=ON,
    ∵OB=OD,
    ∴四边形BMDN是平行四边形,
    ∵MN⊥BD
    ∴BMDN是菱形
    (2)∵四边形BMDN是菱形,
    ∴MB=MD,
    设MD=x,则MB=DM=x,AM=(8-x)
    在Rt△AMB中,BM2=AM2+AB2
    即x2=(8-x)2+42,
    解得:x=1
    答:MD长为1.
    本题考查了矩形的性质,菱形的性质,及勾股定理,熟练使用以上知识是解题的关键.
    题号





    总分
    得分

    相关试卷

    2024-2025学年天津市滨海新区大港第十中学数学九上开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年天津市滨海新区大港第十中学数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省邹城市邹城中学数学九上开学复习检测模拟试题【含答案】:

    这是一份2024-2025学年山东省邹城市邹城中学数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map