2024-2025学年西双版纳市重点中学九上数学开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)计算:=( )(a>0,b>0)
A.B.C.2aD.2a
2、(4分)如图,一棵高为16m的大树被台风刮断.若树在地面6m处折断,则树顶端落在离树底部( )处.
A.5mB.7mC.7.5mD.8m
3、(4分)某校八年级学生去距学校10km的科技馆参观,一部分学生骑自行车,过了30min,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生速度的4倍,设骑自行车学生的速度为xkm/h,则下列方程正确的是( )
A.B.C.D.
4、(4分)如图,为等边三角形,,、相交于点,于点,且,,则的长为( )
A.7B.8C.9D.10
5、(4分)下列说法中,正确的是( )
A.同位角相等
B.对角线相等的四边形是平行四边形
C.四条边相等的四边形是菱形
D.矩形的对角线一定互相垂直
6、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是( )
A.甲B.乙C.丙D.丁
7、(4分)如图,在平行四边形ABCD中,AB=4,CE平分∠BCD交AD边于点E,且AE=3,则BC的长为( )
A.4B.6C.7D.8
8、(4分)若,若,则的度数是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF= _______.
10、(4分)顺次连结任意四边形各边中点所得到的四边形一定是 .
11、(4分)若直角三角形的两边长分别为1和2,则斜边上的中线长为_____.
12、(4分)一次函数(k,b为常数,)的图象如图所示,根据图象信息可得到关于x的方程的解为__________.
13、(4分)两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6,则线段OP=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:一次函数y=(2a+4)x+(3﹣b),根据给定条件,确定a、b的值.
(1)y随x的增大而增大;
(2)图象经过第二、三、四象限;
(3)图象与y轴的交点在x轴上方.
15、(8分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.
求证:BE=CF.
16、(8分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示.回答下列问题:
(1)机动车行驶几小时后,在途中加油站加油?
(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;
(3)中途加油多少升?
(4)如果加油站距目的地还有320千米,车速为60千米/时,要到达目的地,油箱中的油是否够用?请说明理由.
17、(10分)已知:如图,正比例函数y=kx的图象经过点A,
(1)请你求出该正比例函数的解析式;
(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;
(3)请你判断点P(﹣,1)是否在这个函数的图象上,为什么?
18、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k,b的值;
(2)请直接写出不等式kx+b﹣3x>0的解集;
(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在三角形中,点分别是的中点,于点,若,则________.
20、(4分)如图,在平面直角坐标系中,矩形的边一条动直线分别与将于点,且将矩形分为面积相等的两部分,则点到动直线的距离的最大值为__________.
21、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.
22、(4分)比较大小:__________.(用不等号连接)
23、(4分)平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于_______________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)化简求值:,从-1,0, 1,2中选一个你认为合适的m值代入求值.
25、(10分)如果一个三角形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如题(1),菱形AEFD为△ABC的“亲密菱形”.在图(2)中,请以∠BAC为重合角用直尺和圆规作出△ABC的“亲密菱形”AEFD.
26、(12分)如图,点为平面直角坐标系的原点,点在轴的正半轴上,正方形的边长是3,点在上,且.将绕着点逆时针旋转得到.
(1)求证:;
(2)在轴上找一点,使得的值最小,求出点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的除法法则计算可得.
【详解】
解:原式,
故选C.
本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.
2、D
【解析】
首先设树顶端落在离树底部xm,根据勾股定理可得62+x2=(16-6)2,再解即可.
【详解】
设树顶端落在离树底部xm,由题意得:
62+x2=(16-6)2,
解得:x1=8,x2=-8(不符合题意,舍去).
所以,树顶端落在离树底部8m处.
故选:D.
此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.
3、A
【解析】
汽车的速度是4xkm/h, 骑自行车所需要的时间=乘汽车的时间+30min,故选A.
4、C
【解析】
分析:由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=8,AD=BE.则易求.
【详解】
解:∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠ACD=60°;
又∵AE=CD,
在△ABE和△CAD中,
∴△ABE≌△CAD(SAS);
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=10°,则∠PBQ=10°−60°=30°
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=8;
又∵PE=1,
∴AD=BE=BP+PE=1.
故选:C.
本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE≌△ACD.
5、C
【解析】
解:A、两直线平行,同位角相等;
B、对角线互相平分的四边形为平行四边形;
C、正确;
D、矩形的对角线互相平分且相等.
故选:C
本题考查平行四边形、菱形及矩形的性质,掌握相关图形性质是本题的解题关键.
6、D
【解析】
解:∵S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,∴S甲2>S乙2>S丙2>S丁2,故选D.
7、C
【解析】
由平行四边形的性质可得AD∥BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=1,则可求得AD的长,可求得答案.
【详解】
解:∵四边形ABCD为平行四边形,∴AB=CD=1,AD∥BC,AD=BC,∴∠DEC=∠BCE.∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=1.
∵AE=3,∴AD=BC=3+1=2.
故选C.
本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.
8、A
【解析】
根据相似三角形的对应角相等可得∠D=∠A.
【详解】
∵△ABC∽△DEF,∠A=50°,
∴∠D=∠A=50°.
故选:A.
此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
过点M作MH∥BC交CP于H,根据两直线平行,同位角相等可得∠MHP=∠BCP,两直线平行,内错角相等可得∠NCF=∠MHF,根据等边对等角可得∠BCP=∠BPC,然后求出∠BPC=∠MHP,根据等角对等边可得PM=MH,根据等腰三角形三线合一的性质可得PE=EH,利用“角边角”证明△NCF和△MHF全等,根据全等三角形对应边相等可得CF=FH,从而求出EF=CP,根据矩形的对边相等可得BC=AD=10,再利用勾股定理列式求出AP,然后求出PD,再次利用勾股定理列式计算即可求出CP,从而得解.
【详解】
如图,过点M作MH∥BC交CP于H,
则∠MHP=∠BCP,∠NCF=∠MHF,
∵BP=BC,
∴∠BCP=∠BPC,
∴∠BPC=∠MHP,
∴PM=MH,
∵PM=CN,
∴CN=MH,
∵ME⊥CP,
∴PE=EH,
在△NCF和△MHF中,
,
∴△NCF≌△MHF(AAS),
∴CF=FH,
∴EF=EH+FH=CP,
∵矩形ABCD中,AD=10,
∴BC=AD=10,
∴BP=BC=10,
在Rt△ABP中,AP===6,
∴PD=AD−AP=10−6=4,
在Rt△CPD中,CP===,
∴EF=CP=×=.
故答案为:.
本题考查等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质,解题的关键是掌握等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质.
10、平行四边形
【解析】
试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.
考点:平行四边形的判定
11、1或
【解析】
分①2是直角边,利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答;②2是斜边时,根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
①若2是直角边,则斜边=,
斜边上的中线=,
②若4是斜边,则斜边上的中线=,
综上所述,斜边上的中线长是1或.
故答案为1或.
本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,难点在于分情况讨论.
12、x=1
【解析】
直接根据图象找到y=kx+b=4的自变量的值即可.
【详解】
观察图象知道一次函数y=kx+b(k、b为常数,且k≠0)的图象经过点(1,4),
所以关于x的方程kx+b=4的解为x=1,
故答案为:x=1.
本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键.
13、
【解析】
根据HL定理证明,求得,根据余弦求解即可;
【详解】
∵OM=ON,OP=OP,,
∴,
∵∠AOB=60°,
∴,
∵OM=6,
∴.
故答案是.
本题主要考查了直角三角形的性质应用,结合三角函数的应用是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)a>﹣2;(2)a<﹣2,b>3;(3)b<3
【解析】
(1)根据一次函数的性质及函数y随x的增大而增大解答即可;
(2)根据一次函数的性质及函数图象经过第二、三、四象限解答即可;
(3)根据一次函数的性质及函数图象与y轴的交点在x轴上方解答即可.
【详解】
解:(1)∵y随x的增大而增大
∴2a+4>0
∴a>﹣2
(2)∵图象经过第二、三、四象限
∴2a+4<0,3﹣b<0
∴a<﹣2,b>3
(3)∵图象与y 轴的交点在x轴上方
∴3﹣b>0
∴b<3
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:
直线y=kx+b所在的位置与k、b的符号有直接的关系;
k>0时,直线必经过一、三象限;
k<0时,直线必经过二、四象限;
b>0时,直线与y轴正半轴相交;
b=0时,直线过原点;
b<0时,直线与y轴负半轴相交.
15、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可得∠CAD=∠BAD,由等量关系可得∠CAD=∠EAB,有SAS可证△ACF≌△ABE,再根据全等三角形的对应边相等即可得证.
试题解析:证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.
又∵∠EAB=∠BAD,∴∠CAD=∠EAB.
在△ACF和△ABE中,∵AC=AB,∠CAF=∠BAE,AF=AE,∴△ACF≌△ABE(SAS),∴BE=CF.
点睛:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度中等,注意掌握数形结合思想的应用.
16、(1)机动车行驶5小时后加油;(2)Q=42-6t(0≤t≤5);(3)中途加油24升;(4)油箱中的油够用,理由详见解析
【解析】
(1)观察函数图象,即可得出结论;
(2)根据每小时耗油量=总耗油量÷行驶时间,即可求出机动车每小时的耗油量,再根据加油前油箱剩余油量=42−每小时耗油量×行驶时间,即可得出结论;
(3)根据函数图象中t=5时,Q值的变化,即可求出中途加油量;
(4)根据可行驶时间=油箱剩余油量÷每小时耗油量,即可求出续航时间,由路程=速度×时间,即可求出续航路程,将其与320比较后即可得出结论.
【详解】
解:(1)观察函数图象可知:机动车行驶5小时后加油.
(2)机动车每小时的耗油量为(42-12)÷5=6(升),
∴加油前油箱剩余油量Q与行驶时间t的函数关系为Q=42-6t(0≤t≤5)
(3)36-12=24(升).
∴中途加油24升.
(4)油箱中的油够用.
理由:
∵加油后油箱里的油可供行驶11-5=6(小时),
∴剩下的油可行驶6×60=360(千米).
∵360>320,
∴油箱中的油够用.
本题考查了一次函数的应用,解题的关键是:(1)观察函数图象找出结论;(2)根据数量关系,列出函数关系式;(3)根据数量关系,列式计算;(4)利用路程=速度×时间,求出可续航路程.
17、(1)正比例函数解析式为y=﹣2x;(2)m=﹣1;(3)点P不在这个函数图象上,理由见解析.
【解析】
(1)将点A的坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式;(2)将点B(m,m+3)代入所求的解析式,即可求得m的值;(3)把x=- 代入所求的解析式,求得y的值,比较即可.
【详解】
(1)由图可知点A(﹣1,2),代入y=kx得:
﹣k=2,k=﹣2,
则正比例函数解析式为y=﹣2x;
(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,
解得:m=﹣1;
(3)当x=﹣时,y=﹣2×(﹣)=3≠1,
所以点P不在这个函数图象上.
本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可.
18、(1)k=﹣1,b=3;(3)x<1;(3)M点坐标为(3,3).
【解析】
(1)先确定C点坐标,然后利用待定系数法求一次函数解析式,从而得到k、b的值;
(3)几何函数图象,写出直线y=kx+b在直线y=3x上方所对应的自变量的范围即可;
(3)先确定D点坐标,设点M的横坐标为m,则M(m,−m+3),N(m,3m),则3m−3=3,然后求出m即可得到M点坐标.
【详解】
(1)当x=1时,y=3x=3,
∴C点坐标为(1,3).
直线y=kx+b经过(﹣3,6)和(1,3),
则,解得:k=﹣1,b=3;
(3)由图可知,不等式kx+b﹣3x>0的解集为x<1;
(3)当x=0时,y=﹣x+3=3,
∴D点坐标为(0,3),
∴OD=3.
设点M的横坐标为m,则M(m,﹣m+3),N(m,3m),
∴MN=3m﹣(﹣m+3)=3m﹣3
∵MN=OD,
∴3m﹣3=3,解得m=3.
即M点坐标为(3,3).
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了待定系数法求一次函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、80°
【解析】
先由中位线定理推出,再由平行线的性质推出,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF,最后由三角形内角和定理求出.
【详解】
∵点分别是的中点
∴(中位线的性质)
又∵
∴(两直线平行,内错角相等)
∵
∴(两直线平行,同位角相等)
又∵
∴三角形是三角形
∵是斜边上的中线
∴
∴(等边对等角)
∴
本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.
20、
【解析】
设M,N为CO,EF中点, 点到动直线的距离为ON,求解即可.
【详解】
∵
∴SOABC=12
∵将矩形分为面积相等的两部分
∴SCEOF=×(CE+OF)×2=6
∴CE+OF=6
设M,N为CO,EF中点,
∴MN=3
点到动直线的距离的最大值为ON=
故答案.
本题考查的是的动点问题,熟练掌握最大距离的算法是解题的关键
21、-5
【解析】
根据“点P(1,2)关于x轴的对称点为P′”求出点P′的坐标,再将其代入y=kx+3,即可求出答案.
【详解】
∵点P(1,2)关于x轴的对称点为P′
∴点P′坐标为(1,-2)
又∵点P′在直线y=kx+3上
∴-2=k+3
解得k=-5,
故答案为-5.
本题考查的是坐标对称的特点与一次函数的知识,能够求出点P′坐标是解题的关键.
22、<
【解析】
先运用二次根式的性质把根号外的数移到根号内,即可解答
【详解】
∵=
∴<
故答案为:<
此题考查实数大小比较,难度不大
23、1或2
【解析】
分三种情形分别讨论求解即可解决问题;
【详解】
情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,
∴AC=2OA,BD=2OB,
∴AC=BD,
∴四边形ABCD是矩形,
∴四边形ABCD的面积=1.
情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.
∵AH2=AB2-BH2=AC2-CH2,
∴62-(x-8)2=122-x2,
∴x=,
∴AH=,
∴四边形ABCD的面积=8×=2.
情形3:当AB=OB时,四边形ABCD的面积与情形2相同.
综上所述,四边形ABCD的面积为1或2.
故答案为1或2.
本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
二、解答题(本大题共3个小题,共30分)
24、,
【解析】
根据分式的混合运算法则运算即可,注意m的值只能取1.
【详解】
解:原式=
=
=
把m=1代入得,原式=.
本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.
25、见解析,
【解析】
由菱形的性质可知AF是∠BAC的平分线,故点F在∠BAC的平分线与BC的交点上,作∠BAC的角平分线AF交BC于F,作线段AF的垂直平分线MN交AC于D,交AB于E,四边形AEFD即为所求.
【详解】
解:如图,菱形AEFD即为所求.
本题考查作图-复杂作图,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
26、(1)见解析;(2)点坐标为
【解析】
(1)根据直角坐标系的特点证明=90°即可;
(2)作点关于轴对称点,连接交轴于点,即为所求,再根据待定系数法确定函数关系式求出直线EF的解析式,再求出P点.
【详解】
(1)∵是由旋转而来,
∴.
又0,
∴,
即.
(2)如图所示,作点关于轴对称点,连接交轴于点.
∵点和点关于轴成轴对称,
∴.
∴.
且,,三点在一条直线上的时候最小
即取得最小值.
∵,,
∴,,
设直线的表达式为.
,两点坐标代入得,
解得
将∴.
∵点为直线与轴的交点.
∴令,即
得
故点坐标为
此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.
题号
一
二
三
四
五
总分
得分
2024-2025学年咸宁市重点中学九上数学开学检测模拟试题【含答案】: 这是一份2024-2025学年咸宁市重点中学九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年曲靖市重点中学九上数学开学检测模拟试题【含答案】: 这是一份2024-2025学年曲靖市重点中学九上数学开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。