|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年云南省富源县联考九年级数学第一学期开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年云南省富源县联考九年级数学第一学期开学学业质量监测模拟试题【含答案】01
    2024-2025学年云南省富源县联考九年级数学第一学期开学学业质量监测模拟试题【含答案】02
    2024-2025学年云南省富源县联考九年级数学第一学期开学学业质量监测模拟试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年云南省富源县联考九年级数学第一学期开学学业质量监测模拟试题【含答案】

    展开
    这是一份2024-2025学年云南省富源县联考九年级数学第一学期开学学业质量监测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在平行四边形ABCD中,若∠B=135°,则∠D=( )
    A.45°B.55°C.135°D.145°
    2、(4分)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在( )
    A.三条边的垂直平分线的交点B.三个角的角平分线的交点
    C.三角形三条高的交点D.三角形三条中线的交点
    3、(4分)下列命题:
    ①在函数:y=-1x-1;y=3x;y=;y=-;y=(x<0)中,y随x增大而减小的有3个函数;
    ②对角线互相垂直平分且相等的四边形是正方形;
    ③反比例函数图象是两条无限接近坐标轴的曲线,它只是中心对称图形;
    ④已知数据x1、x1、x3的方差为s1,则数据x1+1,x3+1,x3+1的方差为s3+1.
    其中是真命题的个数是( )
    A.1个B.1个C.3个D.4个
    4、(4分)若关于x的分式方程有增根,则k的值是( )
    A.B.C.2D.1
    5、(4分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有( )
    A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0
    6、(4分)下列各式中从左到右的变形,是因式分解的是( )
    A.a2b+ab2=ab(a+b)B.x2+x﹣5=(x﹣2)(x+3)+1
    C.x2+1=x(x+)D.(a+3)(a﹣3)=a2﹣9
    7、(4分)若,下列不等式一定成立的是( )
    A.B.C.D.
    8、(4分)下列条件中,不能判定四边形是正方形的是( )
    A.对角线互相垂直且相等的四边形B.一条对角线平分一组对角的矩形
    C.对角线相等的菱形D.对角线互相垂直的矩形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于点D,AB=5,点E是边AB上的动点(不与A,B点重合),连接DE,过点D作DF⊥DE交AC于点F,连接EF,点H在线段AD上,且DH=AD,连接EH,HF,记图中阴影部分的面积为S1,△EHF的面积记为S2,则S1=_____,S2的取值范围是_____.
    10、(4分)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为_________________.
    11、(4分)将直线向上平移个单位后,可得到直线_______.
    12、(4分)若,则的值是________.
    13、(4分)多边形的每个外角都等于45°,则这个多边形是________边形.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.
    (1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是 ,始终保持不变;
    (2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;
    (3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.
    15、(8分)如图,在矩形中,对角线与相交于点,点,分别是,的中点,连结,.
    (1)求证:;
    (2)连结,若,,求矩形的周长.
    16、(8分)解不等式组并将解集在数轴上表示出来.
    17、(10分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
    (1)如图1,猜想∠QEP= °;
    (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
    (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.
    18、(10分)如图,在平面直角坐标系中,为坐标原点,直线与轴的正半轴交于点,与直线交于点,若点的横坐标为3,求直线与直线的解析式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为________.
    20、(4分)如图,在平面直角坐标系中,点在直线上,点关于轴的对称点恰好落在直线上,则的值为_____.
    21、(4分)把直线向上平移2个单位得到的直线解析式为:_______.
    22、(4分)如图,在中,,将绕顶点顺时针旋转,旋转角为,得到.设中点为,中点为,,连接,当____________时,长度最大,最大值为____________.
    23、(4分)已知一元二次方程的两个解恰好分别是等腰的底边长和腰长,则的周长为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.
    (1)求此抛物线的解析式(a、b、c可用含n的式子表示);
    (2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D(x1,y1)、E(x2、y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点D和E的坐标;
    (3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.
    25、(10分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
    (1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
    (2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
    (3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
    26、(12分)如图,反比例函数 y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).
    (1)求反比例函数与一次函数的函数关系式;
    (2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;
    (3)连接AO、BO,求△ABO的面积;
    (4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据平行四边形的性质解答即可.
    【详解】
    解:∵在平行四边形ABCD中,∠B=135°,
    ∴∠D=∠B=135°,
    故选:C.
    本题考查了平行四边形的性质的知识,解答本题的关键是根据平行四边形的性质得出∠D=∠B.
    2、A
    【解析】
    根据题意,知猎狗应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.
    【详解】
    解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.
    故选:A.
    此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键.
    3、B
    【解析】
    解:在函数:y=-1x-1;y=3x;y=;y=-;y=(x<0)中,y随x增大而减小的有3个函数,所以①正确;
    对角线互相垂直平分且相等的四边形是正方形,所以②正确;
    反比例函数图象是两条无限接近坐标轴的曲线,它是中心对称图形,也是轴对称图形,所以③错误;
    已知数据x1、x1、x3的方差为s1,则数据x1+1,x3+1,x3+1的方差也为s1,所以④错误.
    故选B.
    本题考查命题与定理.
    4、D
    【解析】
    方程两边同乘以x-5可化为x-6+(x-5)=-k,由关于x的分式方程有增根可得x=5,把x=5代入x-6+(x-5)=-k即可求得k值.
    【详解】
    方程两边同乘以x-5得,
    x-6+(x-5)=-k,
    ∵关于x的分式方程有增根,
    ∴x=5,
    把x=5代入x-6+(x-5)=-k得,
    5-6=-k
    k=1.
    故选D.
    本题考查了分式方程的增根,熟知使分式方程最简公分母等于0的未知数的值是分式方程的增根是解决问题的关键.
    5、D
    【解析】
    ∵A,B是不同象限的点,而正比例函数的图象要不在一、三象限,要不在二、四象限,
    ∴由点A与点B的横纵坐标可以知:
    点A与点B在一、三象限时:横纵坐标的符号应一致,显然不可能;
    点A与点B在二、四象限:点B在二象限得n<0,点A在四象限得m<0.
    故选D.
    6、A
    【解析】
    根据因式分解的格式要求及提公因式法和公式法进行求解,并逐一判断即可得解.
    【详解】
    A.,故此选项正确;
    B.没把一个多项式转化成几个整式积的形式,不是因式分解,故此选项错误;
    C.没把一个多项式转化成几个整式积的形式(含有分式),不是因式分解,故此选项错误;
    D.是整式的乘法,不是因式分解,故此选项错误;
    故选:A.
    本题主要考查了因式分解的相关概念,熟练掌握因式分解的格式及公式法与提公因式法进行因式分解的方法是解决本题的关键.
    7、B
    【解析】
    根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.
    【详解】
    、左边减2,右边2,故错误;
    、两边都乘以2,不等号的方向不变,故正确;
    、左边除以,右边除以2,故错误;
    、两边乘以不同的数,故错误;
    故选:.
    本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0.而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
    8、A
    【解析】
    根据正方形的判定方法逐项判断即可.
    【详解】
    对角线互相垂直且相等的四边形不一定是平行四边形,故A不能判定,
    由矩形的一条对角线平分一组对角可知该四边形也是菱形,故B能判定,
    由菱形的对角线相等可知该四边形也是矩形,故C能判定,
    由矩形的对角线互相垂直可知该四边形也是菱形,故D能判定,
    故选A.
    本题主要考查正方形的判定,掌握正方形既是矩形也是菱形是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    作EM⊥BC于M,作FN⊥AD于N,根据题意可证△ADF≌△BDE,可得△DFE是等腰直角三角形.可证△BME≌△ANF,可得NF=BM.所以S1= HD×BD,
    代入可求S1.由点E是边AB上的动点(不与A,B点重合),可得DE垂直AB时DE最小,即,且S2=S△DEF-S1,代入可求S2的取值范围
    【详解】
    作EM⊥BC于M,作FN⊥AD于N,
    ∵EM⊥BD,AD⊥BC
    ∴EM∥AD
    ∵△ABC是等腰直角三角形,AD⊥BC,AB=5
    ∴∠B=∠C=45°=∠BAD=∠DAC,BD=CD=AD=
    ∵DF⊥DE
    ∴∠ADF+∠ADE=90°且∠ADE+∠BDE=90°
    ∴∠ADF=∠BDE且AD=BD,∠B=∠DAF=45°
    ∴△ADF≌△BDE,
    ∴AF=BE,DE=DF
    ∴△DEF是等腰直角三角形,
    ∵AF=BE,∠B=∠DAF=45°,∠EMB=∠ANF=90°
    ∴△BME≌△ANF
    ∴NF=BM
    ∵∵点E是边AB上的动点



    本题考查全等三角形的判定和性质,等腰直角三角形的性质,关键是证△DEF是等腰直角三角形.
    10、(21008,21009).
    【解析】
    观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,
    ∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).
    ∵2017=1008×2+1,
    ∴A2017的坐标为((﹣2)1008,2(﹣2)1008),
    即A2017(21008,21009).
    故答案为(21008,21009).
    【点睛】本题主要考查一次函数图象中点的坐标特征以及规律问题中点的坐标变化特征,解题的关键是找出变化规律A2n+1((﹣2)n,2(﹣2)n)(n为自然数).解决时的关键是要先写出一些点的坐标,根据坐标的特征找出变化的规律.
    11、
    【解析】
    根据“上加下减”原则进行解答即可.
    【详解】
    由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即
    故答案为:
    本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.
    12、1
    【解析】
    利用完全平方公式变形,原式=,把代入计算即可.
    【详解】
    解:
    把代入得:
    原式=.
    故答案为:1.
    本题考查的是求代数式的值,把原式利用完全平方公式变形是解题的关键.
    13、八
    【解析】
    根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.
    【详解】
    解:∵360°÷45°=8,
    ∴这个多边形是八边形.
    故答案为:八.
    此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.
    三、解答题(本大题共5个小题,共48分)
    14、(3)等腰直角三角形;(3);(3)3.
    【解析】
    试题分析:(3)判断三角形CDE和三角形CBF全等是解题的关键;(3)此题过点E作EN∥AB,交BD于点N,证明△EMN≌△FMB,得出EM=FM,于是AM是直角三角形AEF斜边EF中线,只要求出EF长,AM长就求出来了;(3)设EF与GH交于P,连接CE,CF,若∠EPH=45°,前面已证∠EFC=45º,显然GH∥CF,又有AF∥DC,可判断四边形GFCH是平行四边形,CF=GH=,在Rt△CBF中,用勾股定理求出BF长,即t值求出.
    试题解析:(3)∵点E,F的运动速度相同,且同时出发移动t秒,∴DE=BF=t,又∵CD=CB,∠CDE=∠CBF,∴△CDE≌△CBF,∴CE=CF,∠DCE=∠BCF,∠ECF=∠ECB+∠BCF=∠ECB+∠DCE=90º,∴△CEF的形状是等腰直角三角形;(3)先证△EMN≌△FMB,过点E作EN∥AB,交BD于点N,∴∠END=∠ABD=∠EDN=45°, ∴EN="ED=BF=3" ,可证△EMN≌△FMB(AAS),∴EM=FM,Rt△AEF中,AE=4,AF=6+3=8,EF=,∴AM=EF=.(3)连接CE,CF,设EF与GH交于P,由(3)得∠CFE=45°,又∠EPH=45°,∴GH∥CF,又AF∥DC, ∴四边形GFCH是平行四边形 ,∴CF=GH=,在Rt△CBF中,得BF=3,∴t=3.
    考点:3.正方形性质;3.三角形全等及勾股定理的运用;3.平行四边形的判定与性质.
    15、(1)见解析;(2).
    【解析】
    (1)欲证明BE=CF,只要证明△BOE≌△COF即可;
    (2)利用三角形中位线定理求出AD,解直角三角形求出AB即可解决问题;
    【详解】
    解:(1)∵四边形为矩形,
    ∴,.
    ∵,分别为,的中点,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)∵,分别为,的中点,
    ∴为的中位线.
    ∵,
    ∴.
    ∵,
    ∴,
    ∴.
    ∴ .
    本题考查矩形的性质,三角形全等的判定和性质以及三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    16、1<x≤1.
    【解析】
    分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
    【详解】

    由①得,x≤1,
    由②得,x>1,
    故不等式组的解集为:1<x≤1.
    在数轴上表示为:

    17、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
    【解析】
    (1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
    (2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
    (3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
    【详解】
    解:(1)∠QEP=60°;
    证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
    ∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
    则在△CPA和△CQB中,

    ∴△CQB≌△CPA(SAS),
    ∴∠CQB=∠CPA,
    又因为△PEM和△CQM中,∠EMP=∠CMQ,
    ∴∠QEP=∠QCP=60°.
    故答案为60;
    (2)∠QEP=60°.以∠DAC是锐角为例.
    证明:如图2,∵△ABC是等边三角形,
    ∴AC=BC,∠ACB=60°,
    ∵线段CP绕点C顺时针旋转60°得到线段CQ,
    ∴CP=CQ,∠PCQ=60°,
    ∴∠ACB+∠BCP=∠BCP+∠PCQ,
    即∠ACP=∠BCQ,
    在△ACP和△BCQ中,

    ∴△ACP≌△BCQ(SAS),
    ∴∠APC=∠Q,
    ∵∠1=∠2,
    ∴∠QEP=∠PCQ=60°;
    (3)连结CQ,作CH⊥AD于H,如图3,
    与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
    ∵∠DAC=135°,∠ACP=15°,
    ∴∠APC=30°,∠CAH=45°,
    ∴△ACH为等腰直角三角形,
    ∴AH=CH=AC=×4=,
    在Rt△PHC中,PH=CH=,
    ∴PA=PH−AH=-,
    ∴BQ=−.
    本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.
    18、直线l1的解析式为y=﹣x+6,直线l2的解析式为y=x.
    【解析】
    把A(6,0)代入y=﹣x+b求得直线l1的解析式,把B点的横坐标代入y=﹣x+6得到B点的坐标,再把B点的坐标代入y=kx,即可得到结论.
    【详解】
    ∵直线l1:y=﹣x+b与x轴的正半轴交于点A(6,0),∴0=﹣6+b,∴b=6,∴直线l1的解析式为y=﹣x+6;
    ∵B点的横坐标为3,∴当x=3时,y=3,∴B(3,3),把B(3,3)代入y=kx得:k=1,∴直线l2的解析式为y=x.
    本题考查了两条直线相交或平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    过A点作A⊥BD于F,根据平行线的判定可得AF∥BC,根据含30度直角三角形的性质可得BC=AB,根据三角形内角和可得∠ADB=∠BAD,根据等腰三角形的性质可得BD=AB,从而得到BC=BD,在Rt△CBE中,根据含30度直角三角形的性质可得BC,在Rt△CBD中,根据等腰直角三角形的性质可得CD.
    【详解】
    过A点作A⊥BD于F,
    ∵∠DBC=90°,
    ∴AF∥BC,
    ∵CE=2AE,
    ∴AF=BC,
    ∵∠ABD=30°,
    ∴AF=AB,
    ∴BC=AB,
    ∵∠ABD=30°,∠ADB=75°,
    ∴∠BAD=75°,∠ACB=30°,
    ∴∠ADB=∠BAD,
    ∴BD=AB,
    ∴BC=BD,
    ∵CE=4,
    在Rt△CBE中,BC=CE=6,
    在Rt△CBD中,CD=BC=6.
    故答案为:6.
    此题考查了含30度直角三角形的性质,以及等腰三角形的判定和性质,得到Rt△CBE是含30度直角三角形,以及Rt△CBD是等腰直角三角形是解本题的关键.
    20、1
    【解析】
    由点A的坐标以及点A在直线y=-2x+3上,可得出关于m的一元一次方程,解方程可求出m值,即得出点A的坐标,再根据对称的性质找出点B的坐标,由点B的坐标利用待定系数法即可求出k值.
    【详解】
    解:点A在直线上,

    点A的坐标为.
    又点A、B关于y轴对称,
    点B的坐标为,
    点在直线上,
    ,解得:.
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征以及关于x、y轴对称的点的坐标,解题的关键是求出点B的坐标.解决该题型时,找出点的坐标,利用待定系数法求出函数系数是关键.
    21、
    【解析】
    直接根据一次函数图象与几何变换的有关结论求解.
    【详解】
    直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.
    故答案为y=2x+2.
    此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
    22、 3
    【解析】
    连接CP,当点E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.
    【详解】
    ∵,,
    ∴AB=4,∠A=60°,
    由旋转得=∠A=60°,=AB=4,
    ∵中点为,
    ∴=2,
    ∴△是等边三角形,
    ∴∠=60°,
    如图,连接CP,当旋转到点E、C、P三点共线时,EP最长,此时,
    ∵点E是AC的中点,,
    ∴CE=1,
    ∴EP=CE+PC=3,
    故答案为: 120,3.
    此题考查直角三角形的性质,等边三角形的判定及性质,旋转的性质,解题中首先确定解题思路,根据旋转得到EP的最大值即是CE+PC在进行求值,确定思路是解题的关键.
    23、2
    【解析】
    用因式分解法可以求出方程的两个根分别是3和1,根据等腰三角形的三边关系,腰应该是1,底是3,然后可以求出三角形的周长.
    【详解】
    x2-9x+18=0
    (x-3)(x-1)=0
    解得x1=3,x2=1.
    由三角形的三边关系可得:腰长是1,底边是3,
    所故周长是:1+1+3=2.
    故答案为:2.
    此题考查解一元二次方程-因式分解,解题关键在于用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.
    二、解答题(本大题共3个小题,共30分)
    24、(3)y=﹣x2+(n﹣3)x+n;(2)D(﹣3,5),E(3,4);(2)5或3.
    【解析】
    (3)先根据四边形ABCD是矩形,点B的坐标为(n,3)(n>5),求出点A、C的坐标,再根据图形旋转的性质求出A′、C′的坐标;把A、A′、C′三点的坐标代入即可得出a、b、c的值,进而得出其抛物线的解析式;
    (2)将一次函数与二次函数组成方程组,得到一元二次方程x2+(k-2)x-3=5,根据根与系数的关系求出k的值,进而求出D(-3,5),E(3,4);
    (2)设P(5,p),根据平行四边形性质及点M坐标可得Q(2,4+p),分P点在AM下方与P点在AM上方两种情况,根据重合部分的面积关系及对称性求得点P的坐标后即可得▱APQM面积.
    【详解】
    解:(3)∵四边形ABCO是矩形,点B的坐标为(n,3)(n>5),
    ∴A(n,5),C(5,3),
    ∵矩形OA′B′C′由矩形OABC旋转而成,
    ∴A′(5,n),C′(﹣3,5);
    将抛物线解析式为y=ax2+bx+c,
    ∵A(n,5),A′(5,n),C′(﹣3,5),
    ∴ ,
    解得,
    ∴此抛物线的解析式为:y=﹣x2+(n﹣3)x+n;
    (2)对称轴为x=3,得﹣=3,解得n=2,
    则抛物线的解析式为y=﹣x2+2x+2.
    由,
    整理可得x2+(k﹣2)x﹣3=5,
    ∴x3+x2=﹣(k﹣2),x3x2=﹣3.
    ∴(x3﹣x2)2=(x3+x2)2﹣4x3x2=(k﹣2)2+4.
    ∴当k=2时,(x3﹣x2)2的最小值为4,即|x3﹣x2|的最小值为2,
    ∴x2﹣3=5,由x3<x2可得x3=﹣3,x2=3,即y3=4,y2=5.
    ∴当|x3﹣x2|最小时,抛物线与直线的交点为D(﹣3,5),E(3,4);
    (2)①当P点在AM下方时,如答图3,
    设P(5,p),易知M(3,4),从而Q(2,4+p),
    ∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,
    ∴PQ′必过AM中点N(5,2),
    ∴可知Q′在y轴上,
    易知QQ′的中点T的横坐标为3,而点T必在直线AM上,
    故T(3,4),从而T、M重合,
    ∴▱APQM是矩形,
    ∵易得直线AM解析式为:y=2x+2,
    ∵MQ⊥AM,
    ∴直线QQ′:y=﹣x+,
    ∴4+p=﹣×2+,
    解得:p=﹣,
    ∴PN=,
    ∴S▱APQM=2S△AMP=4S△ANP=4××PN×AO=4×××3=5;
    ②当P点在AM上方时,如答图2,
    设P(5,p),易知M(3,4),从而Q(2,4+p),
    ∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,
    ∴PQ′必过QM中点R(,4+),
    易得直线QQ′:y=﹣x+p+5,
    联立,
    解得:x=,y= ,
    ∴H(,),
    ∵H为QQ′中点,
    故易得Q′(,),
    由P(5,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,
    将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,
    整理得:p2﹣9p+34=5,
    解得p3=7,p2=2(与AM中点N重合,舍去),
    ∴P(5,7),
    ∴PN=5,
    ∴S▱APQM=2S△AMP=2××PN×|xM﹣xA|=2××5×2=3.
    综上所述,▱APQM面积为5或3.
    本题为二次函数的综合应用,涉及待定系数法确定函数解析式、二次函数的性质、一元二次方程根与系数的关系、方程思想及分类讨论思想等知识点.在(2)中利用求得n的值是解题的关键,在(2)中确定出k的值是解题的关键,在(2)中根据点P的位置分类讨论及根据已知条件求出点P的坐标是解决本题的难点.
    25、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.
    【解析】
    试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;
    (2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
    (3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.
    试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).
    故答案为10;2.
    (2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).
    (3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.
    答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.
    点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
    26、(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
    【解析】
    (1)利用待定系数法求得一次函数与反比例函数的解析式;
    (2)根据图象,当自变量取相同的值时,函数图象对应的点在上边的函数值大,据此即可确定;
    (1)设一次函数交y轴于D,根据S△ABO=S△DBO+S△DAO即可求解;
    (3)求得OA的长度,分O是顶角的顶点,和A是顶角顶点,以及OA是底边三种情况进行讨论即可求解.
    【详解】
    解:(1)∵A(1,1)在反比例函数图象上,∴k=1,
    ∵B(n,-1)在y=的图象上,
    ∴n=-1.
    ∵A(1,1),B(-1,-1)在一次函数y=mx+b图象上,
    ∴,
    解得m=1,b=2.
    ∴两函数关系式分别是:y=和y=x+2.
    (2)由图象得:当-1<x<0或x>1时,一次函数的值大于反比例函数的值;
    (1)设一次函数y=x+2交y轴于D,则D(0,2),则OD=2,
    ∵A(1,1),B(-1,-1)
    ∴S△DBO=×1×2=1,S△DAO=×1×2=1
    ∴S△ABO=S△DBO+S△DAO=3.
    (3)OA= = ,
    O是△AOP顶角的顶点时,OP=OA,则P(0,- )或P(0,),
    A是△AOP顶角的顶点时,由图象得, P(0,6),
    OA是底边,P是△AOP顶角的顶点时,
    设 P(0,x),分别过A、P作AN⊥x轴于N,PM⊥AN于M,
    则AP=OP=x,PM=1,AM=1-x,
    在Rt△APM中, 即
    解得x= ,
    ∴P(0,).
    故答案为:(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
    本题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同时在求解面积时,要巧妙地利用分割法,将面积分解为两部分之和.
    题号





    总分
    得分
    相关试卷

    2024-2025学年云南省临沧市九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年云南省临沧市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江西省崇仁县数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年江西省崇仁县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河南省新野县数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年河南省新野县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map