终身会员
搜索
    上传资料 赚现金

    2024-2025学年长治市重点中学九年级数学第一学期开学调研试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年长治市重点中学九年级数学第一学期开学调研试题【含答案】第1页
    2024-2025学年长治市重点中学九年级数学第一学期开学调研试题【含答案】第2页
    2024-2025学年长治市重点中学九年级数学第一学期开学调研试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年长治市重点中学九年级数学第一学期开学调研试题【含答案】

    展开

    这是一份2024-2025学年长治市重点中学九年级数学第一学期开学调研试题【含答案】,共28页。试卷主要包含了选择题,四象限D.当时,随的增大而减小,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将一个含30°角的直角三角板ABC绕点A旋转,使得点B、A、C′在同一条直线上,则旋转角∠BAB′的度数是( ).
    A.90°B.120°C.150°D.160°
    2、(4分)在平面直角坐标系中,若点的坐标为,则点在( )
    A.第一象限.B.第二象限.C.第三象限D.第四象限
    3、(4分)如图,中,增加下列选项中的一个条件,不一定能判定它是矩形的是( )
    A.B.C.D.
    4、(4分)下列式子中,属于最简二次根式的是
    A.B.C.D.
    5、(4分)在直角坐标系中,点P(-3,3)到原点的距离是( )
    A. B.3C. 3D.6
    6、(4分)方程x(x﹣1)=x的解是( )
    A.x=0B.x=2C.x1=0,x2=1D.x1=0,x2=2
    7、(4分)对于反比例函数,下列说法不正确的是( )
    A.点在它的图像上B.当时,随的增大而增大
    C.它的图像在第二、四象限D.当时,随的增大而减小
    8、(4分)下列关于反比例函数的说法中,错误的是()
    A.图象经过点B.当时,
    C.两支图象分别在第二、四象限D.两支图象关于原点对称
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2,4,6,8,...,顶点依此用A1,A2,A3,表示,则顶点A55的坐标是___.
    10、(4分)如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.
    11、(4分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.
    12、(4分)在函数y=中,自变量x的取值范围是_________.
    13、(4分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程
    15、(8分)计算:
    (1)(+)()+|1﹣|;
    (2)﹣()2+(π+)0﹣+|﹣2|
    16、(8分)如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.
    (1)如图1,在旋转的过程中,求证:OE=OF;
    (2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;
    (3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.
    17、(10分)如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,﹣1)、C(2,1).
    (1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );
    (2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标( , ).
    18、(10分)如图平面直角坐标系中,点,在轴上,,点在轴上方,,,线段交轴于点,,连接,平分,过点作交于.
    (1)点的坐标为 .
    (2)将沿线段向右平移得,当点与重合时停止运动,记与的重叠部分面积为,点为线段上一动点,当时,求的最小值;
    (3)当移动到点与重合时,将绕点旋转一周,旋转过程中,直线分别与直线、直线交于点、点,作点关于直线的对称点,连接、、.当为直角三角形时,直接写出线段的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则可添加的条件为_______________________________.(填一个即可)
    20、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.
    21、(4分)如图,正比例函数的图象与反比例函数的图象交于A(2,1),B两点,则不等式的解集是_________.
    22、(4分)如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________.
    23、(4分)如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,
    (1)填空:BD=______;
    (2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);
    (3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.
    25、(10分)如图,在平直角坐标系xOy中,直线与反比例函数的图象关于点
    (1)求点P的坐标及反比例函数的解析式;
    (2)点是x轴上的一个动点,若,直接写出n的取值范围.
    26、(12分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:武术、D:跑步四种活动项目为了解学生最喜欢哪一种活动项目每人只选取一种随机抽取了m名学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题:
    ______;
    在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为______;
    请把图的条形统计图补充完整;
    若该校有学生1200人,请你估计该校最喜欢武术的学生人数约是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据旋转角的定义,对应点与旋转中心所连线段的夹角等于旋转角,即可求解.
    【详解】
    旋转角是∠BAB′=180°-30°=150°.
    故选C.
    本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
    2、D
    【解析】
    根据点的坐标为的横纵坐标的符号,可得所在象限.
    【详解】
    ∵2>0,-2<0,
    ∴点在位于平面直角坐标系中的第四象限.
    故选D.
    本题考查了平面直角坐标系中各象限内点的坐标的符号特征.四个象限内点的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    3、B
    【解析】
    根据矩形的判定定理逐个判断即可.
    【详解】
    A、∵四边形ABCD是平行四边形,,
    ∴四边形ABCD是矩形,故本选项不符合题意;
    B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;
    C、∵四边形ABCD是平行四边形,AC=BD,
    ∴四边形ABCD是矩形,故本选项不符合题意;
    D、∵,
    ∴OA=OB,
    ∵四边形ABCD是平行四边形,
    ∴AO=OC,BO=OD,
    ∴AC=BD,
    ∴四边形ABCD是矩形,故本选项不符合题意;
    故选:B.
    本题考查了矩形的判定定理,能熟记矩形的判定定理的内容是解此题的关键,注意:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形.
    4、B
    【解析】
    判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件 (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.
    ∵,∴属于最简二次根式.故选B.
    5、B
    【解析】
    根据勾股定理可求点P(-3,3)到原点的距离.
    【详解】
    解:点P(-3,3)到原点的距离为=3,
    故选:B.
    本题考查勾股定理,熟练掌握勾股定理是解题的关键.
    6、D
    【解析】
    移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    x(x−1)=x,
    x(x−1)−x=0,
    x(x−1−1)=0,
    x=0,x−1−1=0,
    x1=0,x1=1.
    故选:D.
    本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.
    7、D
    【解析】
    根据反比例函数图象的性质对各选项分析判断后利用排除法求解.
    【详解】
    A. ∵ =3,∴点(−3,3)在它的图象上,故本选项正确;
    B. k=−9<0,当x>0时,y随x的增大而增大,故本选项正确;
    C. k=−9<0,∴它的图象在第二、四象限,故本选项正确;
    D. k=−9<0,当x<0时,y随x的增大而增大,故本选项错误。
    故选D.
    此题考查反比例函数的性质,解题关键在于根据反比例函数图象的性质进行分析
    8、C
    【解析】
    根据反比例函数的性质和图像的特征进行判断即可.
    【详解】
    解:A、因为,所以xy=2,(-1)×(-2)=2,故本选项不符合题意;
    B、当x=2时,y=1,该双曲线经过第一、三象限,在每个象限内,y随着x的增大而减小,所以当x时,0<y<1,故本选项不符合题意;
    C、因为k=2>0,该双曲线经过第一、三象限,故本选项错误,符合题意;
    D、反比例函数的两支双曲线关于原点对称,故本选项不符合题意.
    故选C
    本题考查了反比例函数的性质.对于反比例函数,当k>0时,双曲线位于第一、三象限,且在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,双曲线位于第二、四象限,在每一个象限内,函数值y随自变量x增大而增大.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(14,14)
    【解析】
    观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律
    【详解】
    ∵55=413+3,A 与A 在同一象限,即都在第一象限,
    根据题中图形中的规律可得
    3=40+3,A 的坐标为(0+1,0+1),即A (1,1),
    7=41+3,A 的坐标为(1+1,1+1), A (2,2),
    11=42+3,A 的坐标为(2+1,2+1), A (3,3);

    55=413+3,A (14,14),A 的坐标为(13+1, 13+1)
    故答案为(14,14)
    此题考查点的坐标,解题关键在于发现坐标的规律
    10、1
    【解析】
    由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BC=AD=6,
    ∵E为BC的中点,AC⊥AB,
    ∴AE=BC=1,
    故答案为:1.
    本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
    11、
    【解析】
    试题解析:设BE与AC交于点P,连接BD,
    ∵点B与D关于AC对称,
    ∴PD=PB,
    ∴PD+PE=PB+PE=BE最小.
    即P在AC与BE的交点上时,PD+PE最小,为BE的长度;
    ∵正方形ABCD的边长为1,
    ∴AB=1.
    又∵△ABE是等边三角形,
    ∴BE=AB=1.
    故所求最小值为1.
    考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.
    12、x≤1
    【解析】
    根据二次根式的性质列出不等式,求出不等式的取值范围即可.
    【详解】
    若使函数y=有意义,
    ∴1−x≥0,
    即x≤1.
    故答案为x≤1.
    本题主要考查了函数自变量取值范围的知识点,注意:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    13、(0,)
    【解析】
    作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;
    【详解】
    解:作点A关于y轴的对称点A',连接A'D,
    此时△ADE的周长最小值为AD+DA'的长;
    ∵A的坐标为(﹣4,5),D是OB的中点,
    ∴D(﹣2,0),
    由对称可知A'(4,5),
    设A'D的直线解析式为y=kx+b,
    ∴,
    ∴,
    ∴,
    ∴E(0,);
    故答案为(0,);
    本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析.
    【解析】
    分析:由“四边形ABCD是矩形”得知,AB=CD,AD=BC,矩形的四个角都是直角,再根据全等三角形的判定原理SAS判定全等三角形,由此,得出全等三角形的对应边相等的结论.
    详解:已知:四边形ABCD是矩形,AC与BD是对角线,
    求证:,
    证明:四边形ABCD是矩形,
    ,,
    又,
    ≌,

    所以矩形的对角线相等
    点睛:本题考查的是矩形的性质和全等三角形的判定.(1)在矩形中,对边平行相等,四个角都是直角;(2)全等三角形的判定原理AAS;三个判定公理(ASA、SAS、SSS);(3)全等三角形的对应边、对应角都相等.
    15、(1)(2)
    【解析】
    (1)利用平方差公式计算,再算出绝对值的值,即可解答
    (2)先算出零指数幂,算术平方根,再根据二次根式的混合运算即可
    【详解】
    解:(1)( )()+|1﹣ |
    =3﹣2+﹣1
    =;
    (2) ﹣( )2+(π+)0﹣ +|﹣2|
    =﹣3+1﹣3+2﹣
    =﹣3.
    此题考查二次根式的混合运算,解题关键在于掌握运算法则
    16、(1)证明见解析;(2)平行四边形,理由见解析;(3)45°
    【解析】
    (1)由平行四边形的性质得出∠OAF=∠OCE,OA=OC,进而判断出△AOF≌△COE,即可得出结论;
    (2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;
    (3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.
    【详解】
    (1)证明:在▱ABCD中,AD∥BC,
    ∴∠OAF=∠OCE,
    ∵OA=OC,∠AOF=∠COE,
    ∴△AOF≌△COE(ASA),
    ∴OE=OF;
    (2)当旋转角为90°时,四边形ABEF是平行四边形,理由:
    ∵AB⊥AC,
    ∴∠BAC=90°,
    ∵∠AOF=90°,
    ∴∠BAC=∠AOF,
    ∴AB∥EF,
    ∵AF∥BE,
    ∴四边形ABEF是平行四边形;
    (3)在Rt△ABC中,AB=1,BC=,
    ∴AC==2,
    ∴OA=1=AB,
    ∴△ABO是等腰直角三角形,
    ∴∠AOB=45°,
    ∵BF=DF,
    ∴△BFD是等腰三角形,
    ∵四边形ABCD是平行四边形,
    ∴OB=OD,
    ∴OF⊥BD(等腰三角形底边上的中线是底边上的高),
    ∴∠BOF=90°,
    ∴∠α=∠AOF=∠BOF﹣∠AOB=45°.
    此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.
    17、(1)画图见解析;B′(﹣6,2),C′(﹣4,﹣2);(2)(-2x,-2y)
    【解析】
    (1)延长BO,CO,在延长线上分别截取OB′=2OB,OC′=2OC,连接B'C',即可得到放大2倍的位似图形△OB'C';再根据各点的所在的位置写出点的坐标即可;(2)M点的横坐标、纵坐标分别乘以-2即可得M′的坐标.
    【详解】
    解:(1)如图(2分)
    B′(﹣6,2),C′(﹣4,﹣2)
    (2)M′(﹣2x,﹣2y).
    本题考查位似变换,利用数形结合思想解题是关键.
    18、(1)C(3,3);(3)最小值为3+3;(3)D3H的值为3-3或3+3或1-1或1+1.
    【解析】
    (1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.
    (3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.
    (3)在旋转过程中,符号条件的△GD3H有8种情形,分别画出图形一一求解即可.
    【详解】
    (1)如图1中,
    在Rt△AOD中,∵∠AOD=93°,∠OAD=33°,OD=3,
    ∴OA=OD=6,∠ADO=63°,
    ∴∠ODC=133°,
    ∵BD平分∠ODC,
    ∴∠ODB=∠ODC=63°,
    ∴∠DBO=∠DAO=33°,
    ∴DA=DB=1,OA=OB=6,
    ∴A(-6,3),D(3,3),B(6,3),
    ∴直线AC的解析式为y=x+3,
    ∵AC⊥BC,
    ∴直线BC的解析式为y=-x+6,
    由 ,解得,
    ∴C(3,3).
    (3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.
    ∵∠FD′G=∠D′GF=63°,
    ∴△D′FG是等边三角形,
    ∵S△D′FG= ,
    ∴D′G= ,
    ∴DD′=GD′=3,
    ∴D′(3,3),
    ∵C(3,3),
    ∴CD′==3,
    在Rt△PHB中,∵∠PHB=93°,∠PBH=33°,
    ∴PH=PB,
    ∴CD'+D'P+PB=3+D′P+PH≤3+D′O′=3+3,
    ∴CD'+D'P+PB的最小值为3+3.
    (3)如图3-1中,当D3H⊥GH时,连接ED3.
    ∵ED=ED3,EG=EG.DG=D3G,
    ∴△EDG≌△ED3G(SSS),
    ∴∠EDG=∠ED3G=33°,∠DEG=∠D3EG,
    ∵∠DEB=133°,∠A′EO′=63°,
    ∴∠DEG+∠BEO′=63°,
    ∵∠D3EG+∠D3EO′=63°,
    ∴∠D3EO′=∠BEO′,
    ∵ED3=EB,E=EH,
    ∴△EO′D3≌△EO′B(SAS),
    ∴∠ED3H=∠EBH=33°,HD3=HB,
    ∴∠CD3H=63°,
    ∵∠D3HG=93°,
    ∴∠D3GH=33°,设HD3=BH=x,则DG=GD3=3x,GH=x,
    ∵DB=1,
    ∴3x+x+x=1,
    ∴x=3-3.
    如图3-3中,当∠D3GH=93°时,同法可证∠D3HG=33°,易证四边形DED3H是等腰梯形,
    ∵DE=ED3=DH=1,可得D3H=1+3×1×cs33°=1+1.
    如图3-3中,当D3H⊥GH时,同法可证:∠D3GH=33°,
    在△EHD3中,由∠D3HE=15°,∠HD3E=33°,ED3=1,可得D3H=1× ,
    如图3-1中,当DG⊥GH时,同法可得∠D3HG=33°,
    设DG=GD3=x,则HD3=BH=3x,GH=x,
    ∴3x+x=1,
    ∴x=3-3,
    ∴D3H=3x=1-1.
    如图3-5中,当D3H⊥GH时,同法可得D3H=3-3.
    如图3-6中,当DGG⊥GH时,同法可得D3H=1+1.
    如图3-7中,如图当D3H⊥HG时,同法可得D3H=3+3.
    如图3-8中,当D3G⊥GH时,同法可得HD3=1-1.
    综上所述,满足条件的D3H的值为3-3或3+3或1-1或1+1.
    此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、AD∥BC(答案不唯一)
    【解析】
    根据两组对边分别平行的四边形是平行四边形可得添加的条件为.
    【详解】
    解:四边形ABCD中,,要使四边形ABCD为平行四边形,则可添加的条件为,
    故答案为.
    此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.
    20、1
    【解析】
    根据加权平均数的计算公式列出算式,再进行计算即可.
    【详解】
    解:根据题意得:
    95×20%+1×30%+88×50%=1(分).
    即小彤这学期的体育成绩为1分.
    故答案为:1.
    本题考查加权平均数,掌握加权平均数的计算公式是解题的关键.
    21、﹣1<x<0或x>1
    【解析】
    根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
    【详解】
    ∵正比例函数y=kx的图象与反比例函数y的图象交于A(1,1),B两点,∴B(﹣1,﹣1).
    观察函数图象,发现:当﹣1<x<0或x>1时,正比例函数图象在反比例函数图象的上方,∴不等式kx的解集是﹣1<x<0或x>1.
    故答案为:﹣1<x<0或x>1.
    本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.
    22、
    【解析】
    首先根据等边三角形的性质可得A B'=AE=E B',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,,再证明∠B'AC=90°,再证得S△AEC=S△AEB',再求S△A B'C进而可得答案.
    【详解】
    解:∵为等边三角形,
    ∴A B'=AE=E B',∠B'=∠B'EA=60°,
    根据折叠的性质,∠BCA=∠B'CA,
    ∵四边形ABCD是平行四边形,
    ∴AD//BC,AD=BC,AB=CD,
    ∴∠B'EA=∠B'CB,∠EAC=∠BCA,
    ∴∠ECA=∠BCA=30°,
    ∴∠EAC=30°,
    ∴∠B'AC=90°,
    ∵,
    ∴B'C=8,
    ∴AC==,
    ∵B'E=AE=EC,
    ∴S△AEC=S△AEB'= S△A B'C= × ×4×=,
    故答案为.
    此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.
    23、3.
    【解析】
    试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质, 则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.
    考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)BD=2 (2) (3)120° 30°
    【解析】
    .
    分析:(1)根据勾股定理计算即可;
    (2)连接AP,当AP与PE在一条线上时,PE+PC最小,利用勾股定理求出最小值;
    (3)分两种情况考虑:①当E在BC延长线上时,如图2所示,△PCE为等腰三角形,则CP=CE;②当E在BC上,如图3所示,△PCE是等腰三角形,则PE=CE,分别求出∠PEC的度数即可.
    详解:(1)BD==2 ;
    (2)如图1所示:当AP与PE在一条线上时,PE+PC最小,

    ∵AB=,BE=t,
    ∴PE+PC的最小值为,
    (3)分两种情况考虑:
    ①当点E在BC的延长线上时,

    如图2所示,△PCE是等腰三角形,则CP=CE,
    ∴∠CPE=∠CEP,
    ∴∠BCP=∠CPE+∠CEP=2∠CEP,
    ∵在正方形ABCD中,∠ABC=90°,
    ∴∠PBA=∠PBC=45°,
    在△ABP和△CBP中,

    ∴△ABP≌△CBP(SAS),
    ∴∠BAP=∠BCP=2∠CEP,
    ∵∠BAP+∠PEC=90°,
    ∴2∠PEC+∠PEC=90°,
    ∴∠PEC=30°;
    ②当点E在BC上时,

    如图3所示,△PCE是等腰三角形,则PE=CE,
    ∴∠CPE=∠PCE,
    ∴∠BEP=∠CPE+∠PCE=2∠ECP,
    ∵四边形ABCD是正方形,
    ∴∠PBA=∠PBC=45°,
    又AB=BC,BP=BP,
    ∴△ABP≌△CBP,
    ∴∠BAP=∠BCP,
    ∵∠BAP+∠AEB=90°,
    ∴2∠BCP+∠BCP=90°,
    ∴∠BCP=30°,
    ∴∠AEB=60°,
    ∴∠PEC=180°-∠AEB=120° .
    点睛:本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,两点之间线段最短及分类讨论的数学思想,运用勾股定理是解(1)的关键,确定点P的位置是解(2)的关键,分两种情况讨论是解(3)的关键.
    25、(1);(2)
    【解析】
    (1)先把P(1,a)代入y=x+2,求出a的值,确定P点坐标为(1,3),然后把P(1,3)代入y=求出k的值,从而可确定反比例函数的解析式;
    (2)过P作PB⊥x轴于点B,则B点坐标为(1,0),PB=3,然后利用PQ≤1,由垂线段最短可知,PQ≥3,然后利用PQ≤1,在直角三角形PBQ中,PQ=1时,易确定n的取值范围,要注意分点Q在点B左右两种情况.当点Q在点B左侧时,点Q坐标为(-3,0);当点Q在点B右侧时,点Q坐标为(1,0),从而确定n的取值范围.
    【详解】
    解:(1)∵直线与反比例函数的图象交于点,
    ∴.
    ∴点P的坐标为.
    ∴.
    ∴反比例函数的解析式为.
    (2)过P作PB⊥x轴于点B,
    ∵点P的坐标为(1,3),Q(n,0)是x轴上的一个动点,PQ≤1,
    由勾股定理得BQ≤,
    ∴1-4=-3,1+4=1,
    ∴n的取值范围为-3≤n≤1.
    本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了勾股定理的应用.
    26、(1)50;(2)108°;(3)见解析;(4)1.
    【解析】
    (1)由B项目人数及其所占百分比可得总人数m;
    (2)用360°乘以B项目对应百分比可得;
    (3)根据各项目人数之和为50求得A项目人数即可补全图形;
    (4)总人数乘以样本中C项目人数所占比例即可得.
    【详解】

    故答案为50;
    在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为,
    故答案为;
    项目人数为人,
    补全图形如下:
    估计该校最喜欢武术的学生人数约是人.
    本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    题号





    总分
    得分

    相关试卷

    2024-2025学年双鸭山市重点中学九年级数学第一学期开学调研试题【含答案】:

    这是一份2024-2025学年双鸭山市重点中学九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东阳谷县九年级数学第一学期开学调研试题【含答案】:

    这是一份2024-2025学年山东阳谷县九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年七台河市重点中学九年级数学第一学期开学调研试题【含答案】:

    这是一份2024-2025学年七台河市重点中学九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map