2024-2025学年浙江省杭州市文澜中学九上数学开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG最小值为( )
A.B.C.D.
2、(4分)如果,下列不等式中错误的是( )
A.B.C.D.
3、(4分)若,则下列不等式不成立的是( ).
A.B.C.D.
4、(4分)下列说法正确的是( )
A.为了解我国中学生课外阅读的情况,应采取全面调查的方式
B.一组数据1、2、5、5、5、3、3的中位数和众数都是5
C.投掷一枚硬币100次,一定有50次“正面朝上”
D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定
5、(4分)不等式组中的两个不等式的解集在数轴上表示为( )
A.B.
C.D.
6、(4分)函数y=﹣x﹣3的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E、F,将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的取值范围是( )
A.4<m<6B.4≤m≤6C.4<m<5D.4≤m<5
8、(4分)如图,在平行四边形中,,,,点是折线上的一个动点(不与、重合).则的面积的最大值是( )
A.B.1C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将沿方向平移得到,如果四边形的周长是,则的周长是____.
10、(4分)如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=_____.
11、(4分)当x______时,在实数范围内有意义.
12、(4分)判断下列各式是否成立:
=2; =3; =4; =5
类比上述式子,再写出两个同类的式子_____、_____,你能看出其中的规律吗?用字母表示这一规律_____,
13、(4分)点P(﹣3,4)到x轴和y轴的距离分别是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正比例函数的图象与反比例函数的图象交于,两点,其中点的横坐标为.
(1)求的值.
(2)若点是轴上一点,且,求点的坐标.
15、(8分)如图,在的方格纸中,每一个小正方形的边长均为,点在格点上,用无刻度直尺按下列要求作图,保留必要的作图痕迹.
在图1中,以为边画一个正方形;
在图2中,以为边画一个面积为的矩形(可以不在格点上).
16、(8分)如图,已知是等边三角形,点在边上,是以为边的等边三角形,过点作的平行线交线段于点,连接。
求证:(1);
(2)四边形是平行四边形。
17、(10分)如图,图1中ΔABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.
图1 图2
(1)求证:BE=EF;
(2)若将DE从中位线的位置向上平移,使点D、E分别在线段AB、AC上(点E与点A不重合),其他条件不变,如图2,则(1)题中的结论是否成立?若成立,请证明;若不成立.请说明理由.
18、(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式:=________.
20、(4分)不等式组的解集是________
21、(4分)若不等式组的解集是,那么m的取值范围是______.
22、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD=4,连接BD,取BD的中点E,连接CE,则CE的最大值为_____.
23、(4分)在一次测验中,初三(1)班的英语考试的平均分记为a分,所有高于平均分的学生的成绩减去平均分的分数之和记为m,所有低于平均分的学生的成绩与平均分相差的分数的绝对值的和记为n,则m与n的大小关系是 ______ .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
25、(10分)如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.
(1)在图甲中画出一个▱ABCD.
(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)
26、(12分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:
(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.证明△ADP∽△DHG,推出∠DHG=∠DAP=定值,推出点G在射线HF上运动,推出当CG⊥HE时,CG的值最小,想办法求出CG即可.
【详解】
如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.
∵DG⊥PG,DH⊥AC,
∴∠DGP=∠DHA,
∵∠DPG=∠DAH,
∴△ADH∽△PDG,
∴,∠ADH=∠PDG,
∴∠ADP=∠HDG,
∴△ADP∽△DHG,
∴∠DHG=∠DAP=定值,
∴点G在射线HF上运动,
∴当CG⊥HE时,CG的值最小,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴∠ADH+∠HDF=90°,
∵∠DAH+∠ADH=90°,
∴∠HDF=∠DAH=∠DHF,
∴FD=FH,
∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,
∴∠FHC=∠FCH,
∴FH=FC=DF=3,
在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,
∴AC==5,DH=,
∴CH=,
∴EH=,
∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,
∴△CGF≌△HEF(AAS),
∴CG=HE=,
∴CG的最小值为,
故选D.
本题考查旋转变换,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形核或全等三角形解决问题,属于中考选择题中的压轴题.
2、B
【解析】
根据a<b<0,可得ab>0,a+b<0,>0,a-b<0,从而得出答案.
【详解】
A、ab>0,故本选项不符合题意;
B、>1,故本选项符合题意;
C、a+b<0,故本选项不符合题意;
D、a-b<0,故本选项不符合题意.
故选:B.
本题考查了不等式的性质,是基础知识比较简单.
3、D
【解析】
试题分析:A、a<0,则a是负数,a+5<a+7可以看作5<7两边同时加上a,故A选项正确;
B、5a>7a可以看作5<7两边同时乘以一个负数a,不等号方向改变,故B选项正确;
C、5﹣a<7﹣a是不等号两边同时加上﹣a,不等号不变,故C选项正确;
D、a<0,>可以看作>两边同时乘以一个负数a,不等号方向改变,故D选项错误.
故选D.
考点:不等式的性质.
4、D
【解析】
解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,
把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;
5出现的次数最多,所以众数是5,故选项B错误,
投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,
若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,
故选D.
本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.
5、C
【解析】
分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
【详解】
不等式组,
解得:,
解得:,
∴不等式组的解集为:,
故选:C.
本题考查了不等式组的解法和在数轴上表示不等式组的解集.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.
6、A
【解析】
根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.
【详解】
解:∵k=﹣1<0,
∴一次函数经过二、四象限;
∵b=﹣3<0,
∴一次函数又经过第三象限,
∴一次函数y=﹣x﹣3的图象不经过第一象限,
故选:A.
此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二、四象限,b<0,函数图象经过第三象限.
7、A
【解析】
根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到EF上时的x的值,从而得到m的取值范围,即可得出答案.
【详解】
∵菱形ABCD的顶点A(2,0),点B(1,0),
∴点D的坐标为(4,1),
当y=1时,
x+3=1,
解得x=−2,
∴点D向左移动2+4=6时,点D在EF上,
∵点D落在△EOF的内部(不包括三角形的边),
∴4
本题考查了菱形的性质及点的平移.利用菱形的性质求出点D的坐标并确定点D在EF上时的的横坐标是解题的关键.
8、D
【解析】
分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.
【详解】
解:分三种情况:
①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,
过A作AF⊥BC于F,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠C+∠B=180°,
∵∠C=120°,
∴∠B=60°,
Rt△ABF中,∠BAF=30°,
∴BF=AB=1,AF=,
∴此时△ABE的最大面积为:×4×=2;
②当E在CD上时,如图2,此时,△ABE的面积=S▱ABCD=×4×=2;
③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积=2,
综上,△ABE的面积的最大值是2;
故选:D.
本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据平移的性质可得,即可求得的周长.
【详解】
平移,
,
,
,
故答案为:1.
本题考查了三角形平移的问题,掌握平移的性质是解题的关键.
10、
【解析】
由等腰三角形的性质可得AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°,可证△ADC≌△BEC,可得AD=BE=,∠D=∠BEC=45°,由勾股定理可求AB=2,即可求AC的长。
【详解】
证明:如图,连接BE,
∵△ACB和△DCE都是等腰直角三角形
∴AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°
∴∠DCA=∠BCE,且AC=BC,DC=EC,
∴△ADC≌△BEC(SAS)
∴AD=BE=,∠D=∠BEC=45°,
∴∠AEB=90°
∴AB==2
∵AB=BC
∴BC=,因为△ACB是等腰直角三角形,所以BC=AC=.
本题考查等腰直角三角形的性质、全等三角形的判定和性质,解题的关键是掌握等腰直角三角形的性质、全等三角形的判定和性质.
11、x≥-1.
【解析】
根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.
【详解】
由题意得,2x+2≥0,
解得,x≥-1,
故答案为:x≥-1.
此题考查二次根式的有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
12、
【解析】
类比上述式子,即可两个同类的式子,然后根据已知的几个式子即可用含n的式子将规律表示出来.
【详解】
,
用字母表示这一规律为: ,
故答案为:,.
此题考查二次根式的性质与化简,解题关键在于找到规律.
13、4;1.
【解析】
首先画出坐标系,确定P点位置,根据坐标系可得答案.
【详解】
点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.
故答案为:4;1.
本题考查了点的坐标,关键是正确确定P点位置.
三、解答题(本大题共5个小题,共48分)
14、(1)k=2;(2)P点的坐标为或.
【解析】
(1)把代入正比例函数的图象求得纵坐标,然后把的坐标代入反比例函数,即可求出的值;
(2)因为、关于点对称,所以,即可求得,然后根据三角形面积公式列出关于的方程,解方程即可求得.
【详解】
解:(1)正比例函数的图象经过点,点的横坐标为.
,
点,
∵反比例函数的图象经过点,
;
(2),
,
设,则,
,即,
点的坐标为或.
本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识点,利用数形结合是解答此题的关键.
15、(1)详情见解析;(2)详情见解析
【解析】
(1)观察图中AB,可知AB为以三个方格组成的矩形的对角线,据此根据方格的特点结合矩形的性质及正方形的判定定理进一步画出图形即可;
(2)首先根据题意按照(1)中作法画出正方形ABEF,结合题意可知其面积为10,据此,我们只要利用矩形对角线互相平分且相等的性质找到AF与BC的中点,然后连接起来即可得出答案.
【详解】
(1)如图1中,正方形ABCD即为所求:
(2)如图2中,矩形ABCD即为所求:
本题主要考查了根据矩形及正方形性质进行按要求作图,熟练掌握相关概念是解题关键.
16、(1)见解析;(2)四边形是平行四边形,见解析.
【解析】
(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;
(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;
【详解】
证明:(1)∵和都是等边三角形,
∴,
,
又∵,
,
∴,
在和中,
∴;
(2)由①得,
∴,
又∵,
∴,
∴,
又∵,
∴四边形是平行四边形.
本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.
17、 (1)证明见解析;(2)结论仍然成立;(3)
【解析】
(1)利用等边三角形的性质以及三线合一证明得出结论;
(2)由中位线的性质、平行线的性质,等边三角形的性质以及三角形全等的判定与性质证明
【详解】
(1)证明:∵ΔABC是等边三角形,
∴∠ABC=∠ACB=,AB=BC=AC
∵DE是中位线,
∴E是AC的中点,
∴BE平分∠ABC,AE=EC
∴∠EBC=∠ABC=
∵AE=CF,
∴CE=CF,
∴∠CEF=∠F
∵∠CEF+∠F=∠ACB=,
∴∠F=,
∴∠EBC=∠F,
∴BE=EF
(2)结论仍然成立.
∵DE是由中位线平移所得;
∴DE//BC,
∴∠ADE=∠ABC=,∠AED=∠ACB=,
∴ΔADE是等边三角形,
∴DE=AD=AE,
∵AB=AC,
∴BD=CE,
∵AE=CF,
∴DE=CF
∵∠BDE=-∠ADE=,∠FCE=-∠ACB=,
∴∠FCE=∠EDB,
∴ΔBDE≌ΔECF,
∴BE=EF
此题考查等边三角形的判定与性质,三角形中位线定理和全等三角形的判定与性质,解题关键在于利用三线合一证明得出结论
18、(1)图形见解析;(2)P点坐标为(,﹣1).
【解析】
(1)分别作出点A、B关于点C的对称点,再顺次连接可得;由点A的对应点A2的位置得出平移方向和距离,据此作出另外两个点的对应点,顺次连接可得;
(2)连接A1A2、B1B2,交点即为所求.
【详解】
(1)如图所示:A1(3,2)、C1(0,2)、B1(0,0);A2(0,-4)、B2(3,﹣2)、C2(3,﹣4).
(2)将△A1B1C1绕某一点旋转可以得到△A2B2C2,旋转中心的P点坐标为(,﹣1).
本题主要考查作图-旋转变换、平移变换,解题关键是根据旋转变换和平移变换的定义作出变换后的对应点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
利用提公因式完全平方公式分解因式.
【详解】
故答案为:
利用提公因式、平方差公式、完全平方公式分解因式.
20、x 1
【解析】
分析:先求出两个不等式的解集,再求其公共解.
详解:,解不等式①得:x>﹣2,解不等式②得:x>1,所以,不等式组的解集是x>1.
故答案为:x>1.
点睛:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
21、.
【解析】
求出不等式x+9<4x-3的解集,再与已知不等式组的解集相比较即可得出结论.
【详解】
:,
解不等式得,,
不等式组的解集为,
,
故答案为:.
本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
22、1.
【解析】
作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.
【详解】
解:作AB的中点M,连接EM、CM.
在Rt△ABC中,AB===10,
∵M是直角△ABC斜边AB上的中点,
∴CM=AB=3.
∵E是BD的中点,M是AB的中点,
∴ME=AD=3.
∴3﹣3≤CE≤3+3,即3≤CE≤1.
∴最大值为1,
故答案为:1.
本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.
23、m=n
【解析】
根据“平均分的意义和平均分、总分之间的关系”进行分析解答即可.
【详解】
设初三(1)班这次英语考试中成绩高于平方分的有x人,低于平均分的有y人,等于平均分的有z人,则由题意可得:
a(x+y+z)=(ax+m)+(ay-n)+az,
∴ax+ay+az=az+m+ay-n+az,
∴0=m-n,
∴m=n.
故答案为:m=n.
“能够根据:全班的总分=成绩高于平均分的同学的总得分+成绩低于平均分的同学的总得分+成绩等于平均分的同学的总得分得到等式a(x+y+z)=(ax+m)+(ay-n)+az”是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)直线AB的解析式为y=1x﹣1,
(1)点C的坐标是(1,1).
【解析】
待定系数法,直线上点的坐标与方程的.
(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.
(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.
【详解】
解:(1)设直线AB的解析式为y=kx+b,
∵直线AB过点A(1,0)、点B(0,﹣1),
∴,解得.
∴直线AB的解析式为y=1x﹣1.
(1)设点C的坐标为(x,y),
∵S△BOC=1,∴•1•x=1,解得x=1.
∴y=1×1﹣1=1.
∴点C的坐标是(1,1).
25、(1)答案见解析;(2)答案见解析
【解析】
试题分析:(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;
(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.
试题解析:(1)如图①:
.
(2)如图②,
.
考点:平行四边形的性质
26、(1)每天可销售450件商品,商场获得的日盈利是6750元;(2)每件商品售价为60或1元时,商场日盈利达到100元.
【解析】
(1)首先求出每天可销售商品数量,然后可求出日盈利;
(2)设商场日盈利达到100元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.
【详解】
(1)当每件商品售价为55元时,比每件商品售价50元高出5元,
即55﹣50=5(元),
则每天可销售商品450件,即500﹣5×10=450(件),
商场可获日盈利为(55﹣40)×450=6750(元).
答:每天可销售450件商品,商场获得的日盈利是6750元;
(2)设商场日盈利达到100元时,每件商品售价为x元.
则每件商品比50元高出(x﹣50)元,每件可盈利(x﹣40)元,
每日销售商品为500﹣10×(x﹣50)=1000﹣10x(件).
依题意得方程(1000﹣10x)(x﹣40)=100,
整理,得x2﹣140x+410=0,
解得x=60或1.
答:每件商品售价为60或1元时,商场日盈利达到100元.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】: 这是一份2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
47,2023年浙江省杭州市文澜中学九年级竞赛数学试卷: 这是一份47,2023年浙江省杭州市文澜中学九年级竞赛数学试卷,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年浙江省杭州市文澜中学数学九上期末教学质量检测试题含答案: 这是一份2023-2024学年浙江省杭州市文澜中学数学九上期末教学质量检测试题含答案,共8页。试卷主要包含了下列说法,在下列命题中,正确的是,如果,那么下列各式中不成立的是等内容,欢迎下载使用。