2024-2025学年浙江省嘉兴地区九年级数学第一学期开学综合测试模拟试题【含答案】
展开这是一份2024-2025学年浙江省嘉兴地区九年级数学第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为( )
A.B.C.D.
2、(4分)如图,菱形中,,这个菱形的周长是( )
A.B.C.D.
3、(4分)下列命题的逆命题成立的是( )
A.对顶角相等B.等边三角形是锐角三角形
C.正方形的对角线互相垂直D.平行四边形的对角线互相平分
4、(4分)一次函数y=2x–6的图象不经过第( )象限.
A.一 B.二 C.三 D.四
5、(4分)如图,小明在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于的长为半径画弧,两弧相交于C、D两点,直线CD即为所求.根据他的作图方法可知四边形一定是( )
A.矩形B.菱形C.正方形D.无法确定
6、(4分)若,则( )
A.7B.-7C.5D.-5
7、(4分)下列说法不一定成立的是( )
A.若,则
B.若,则
C.若,则
D.若,则
8、(4分)下列图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形的边长为2,点,分别是边,上的两个动点,且满足,设的面积为,则的取值范围是__.
10、(4分)已知分式,当x__________时,分式无意义?当x____时,分式的值为零?当x=-3时,分式的值为_____________.
11、(4分)如图,AB=AC,则数轴上点C所表示的数为__________.
12、(4分)如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为_________cm2.
13、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.
(1)取出白球的概率是多少?
(2)如果袋中的白球有18只,那么袋中的红球有多少只?
15、(8分) “端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.
(1)求A商品、B商品的单价分别是多少元?
(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.
(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.
16、(8分)如图,平行四边形中,,点、分别在、的延长线上,,,垂足为点,.
(1)求证:是中点;
(2)求的长.
17、(10分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
18、(10分)(1)计算:
(2)如图,E、F是矩形ABCD边BC上的两点,且AF=DE.求证:BE=CF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若是整数,则满足条件的最小正整数为________.
20、(4分)如果关于x的分式方程有增根,那么m的值为______.
21、(4分)▱ABCD中,∠A=50°,则∠D=_____.
22、(4分)比较大小:__________.(用不等号连接)
23、(4分)如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
(1)求线段CD的长;
(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
(3)当点P在线段AD上运动时,求S与t的函数关系式.
25、(10分)解不等式组,并将其解集在数轴上表示出来.
(1);
(2)
26、(12分)已知如图,在▱ABCD中,E为CD的中点,连接AE并延长,与BC的延长线相交于点F.
求证:AE=FE.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据函数图像分析即可解题.
【详解】
由函数图像可知一次函数单调递减,正比例函数单调递增,
将(k-m)x+b<0变形,即kx+b<mx,
对应图像意义为一次函数图像在正比例函数图像下方,即交点P的右侧,
∵点P的横坐标为1,
∴即为所求解集.故选B
本题考查了一次函数与正比例函数的图像问题,数形结合的解题方法,中等难度, 将不等式问题转化为图像问题是解题关键,
2、C
【解析】
通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.
【详解】
解:因为四边形ABCD是菱形,
所以AC⊥BD,设AC与BD交于点O,
则AO=1,BO=2,
所以AB=.
周长为4AB=4.
故选:C.
本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.
3、D
【解析】
利用对顶角的性质、锐角三角形的定义、正方形的性质及平行四边形的性质分别判断后即可确定正确的选项.
【详解】
解:A、逆命题为相等的角是对顶角,不成立;
B、逆命题为:锐角三角形是等边三角形,不成立;
C、逆命题为:对角线互相垂直的四边形是正方形,不成立;
D、逆命题为:对角线互相平分的四边形是平行四边形,成立,
故选:D.
考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.
4、B
【解析】分析:根据一次函数图象与系数的关系的关系解答即可.
详解:∵2>0,-6<0,
∴一次函数y=2x–6的图象经过一、三、四象限,不经过第二象限.
故选B.
点睛:本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
5、B
【解析】
根据菱形的判定方法:四边都相等的四边形是菱形判定即可.
【详解】
根据作图方法可得:,
因此四边形ABCD一定是菱形.
故选:B
本题考查了菱形的判定,解题的关键在于根据四边相等的四边形是菱形判断.
6、D
【解析】
根据多项式乘多项式的运算法则进行计算,确定出p、q的值即可求出答案.
【详解】
因为,所以,
所以
故答案选D.
本题考查的是多项式乘多项式的运算,能够准确计算解题的关键.
7、C
【解析】
A.在不等式的两边同时加上c,不等式仍成立,即,故本选项错误;
B.在不等式的两边同时减去c,不等式仍成立,即,故本选项错误;
C.当c=0时,若,则不等式不成立,故本选项正确;
D.在不等式的两边同时除以不为0的,该不等式仍成立,即,故本选项错误.
故选C.
8、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故此选项错误;
B.是轴对称图形,也是中心对称图形,故此选项正确;
C.是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合,故此选项错误;
D.是轴对称图形,不是中心对称图形,故此选项错误.
故选B.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
先证明为正三角形,根据直角三角形的特点和三角函数进行计算即可解答
【详解】
菱形的边长为2,,
和都为正三角形,
,,
,而,
,
;
,,
,
即,
为正三角形;
设,
则,
当时,最小,
,
当与重合时,最大,
,
.
故答案为.
此题考查等边三角形的判定与性质和菱形的性质,解题关键在于证明为正三角形
10、 -5
【解析】
根据分式无意义的条件是分母为0可得第一空,根据分子为0,分母不为0时分式的值为0可得第二空,将的值代入分式中即可求值,从而得出第三空的答案.
【详解】
根据分式无意义的条件可知,当时,分式无意义,此时;
根据分式的值为0的条件可知,当时,分式的值为0,此时;
将 x的值代入分式中,得;
故答案为: .
本题主要考查分式无意义,分式的值为0以及分式求值,掌握分式无意义,分式的值为0的条件是解题的关键.
11、
【解析】
分析:根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.
详解:由勾股定理得:AB==,∴AC=,
∵点A表示的数是﹣1,∴点C表示的数是﹣1.
故答案为﹣1.
点睛:本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.
12、7.1cm2
【解析】
已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=1,所以△BEF的面积=BF×AB=×1×3=7.1.
点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.
13、y=﹣1x+1.
【解析】
由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.
【详解】
∵点P(1,2)关于x轴的对称点为P′,
∴P′(1,﹣2),
∵P′在直线y=kx+3上,
∴﹣2=k+3,解得:k=﹣1,
则y=﹣1x+3,
∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.
故答案为y=﹣1x+1.
考点:一次函数图象与几何变换.
三、解答题(本大题共5个小题,共48分)
14、 (1)(2)袋中的红球有6只.
【解析】
(1)根据取出白球的概率是1-取出红球的概率即可求出;
(2)设有红球x个,则总求出为(x+18)个,再根据红球的概率即可列出方程,从而解出x.
【详解】
解:(1)=
(2)设袋中的红球有只,
则有
解得
所以,袋中的红球有6只.
15、(1)A商品、B商品的单价分别是50元、40元;
(2);
(3)当购进商品少于20件,选择购B种商品省钱.
【解析】
(1)根据题意设每件A商品的单价是x元,每件B商品的单价是y元,再建立方程式进行作答.(2)根据题意建立相关的一次函数.(3)根据题意,需要分情况讨论.再利用(2)中结论,得到商品为20件时,进行分类讨论.
【详解】
(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得
,
解得.
答:A商品、B商品的单价分别是50元、40元;
(2)当0<x≤10时,y=50x;
当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;
综上所述:
(3)设购进A商品a件(a>10),则B商品消费40a元;
当40a=30a+200,
则a=20
所以当购进商品正好20件,选择购其中一种即可;
当40a>30a+200,
则a>20
所以当购进商品超过20件,选择购A种商品省钱;
当40a<30a+200,
则a<20
所以当购进商品少于20件,选择购B种商品省钱.
本题考查了在实际运用中方程式的建立及相关讨论,熟练掌握在实际运用中方程式的建立及相关讨论是本题解题关键.
16、(1)证明见解析;(2).
【解析】
(1)根据平行四边形的对边平行可以得到AB//CD,又AE//BD,可以证明四边形ABDE是平行四边形,所以AB=DE,故D是EC的中点;
(2)先求出是等边三角形,再求EF.
【详解】
(1)在平行四边形中,
,且,
又∵,
∴四边形是平行四边形,
∴,
,
即是的中点;
(2)∵,
∴是直角三角形
又∵是的中点,
∴,
∵,
∴,
∴是等边三角形,
∴,
∴在中
.
本题主要考查了平行四边形的性质与判定,直角三角形斜边上的中线等于斜边的一半以及等边三角形的判定,熟练掌握性质定理并灵活运用是解题的关键.
17、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
【解析】
(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
【详解】
(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
故答案为x,y;
(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
故答案为2;
(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.
18、(1)1;(2)见解析
【解析】
分析:(1)根据绝对值的性质,二次根式的性质和化简,乘方的意义,直接计算并化简即可;
(2)根据矩形的性质,得到∠B=∠C=90°,AB=CD,然后根据HL证明Rt△ABF≌Rt△DCE,进而根据全等三角形的性质得到结论.
详解:(1)原式=;
(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,
∵AF=DE,∴Rt△ABF≌Rt△DCE,∴BF=EC,∴BE=CF.
点睛:此题猪腰考查了实数的运算和矩形的性质的应用,解(1)的关键是熟记绝对值的性质,二次根式的性质和化简,乘方的意义,解(2)的关键是灵活运用矩形的性质证明Rt△ABF≌Rt△DCE.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
把28分解因数,再根据二次根式的定义判断出n的最小值即可.
【详解】
解:∵28=4×1,4是平方数,
∴若是整数,则n的最小正整数值为1,
故答案为1.
本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.
20、-4
【解析】
增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.
【详解】
解:,
去分母,方程两边同时乘以,得:,
由分母可知,分式方程的增根可能是2,
当时,,
.
故答案为.
考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
21、130°
【解析】
根据平行四边形的邻角互补,则∠D=
22、<
【解析】
先运用二次根式的性质把根号外的数移到根号内,即可解答
【详解】
∵=
∴<
故答案为:<
此题考查实数大小比较,难度不大
23、20
【解析】
设AB=CD=a,AD=BC=b,根据三角形的面积依次求出BE,EC,CF,DF的长度,再根据△ADF面积为5,可列方程,可求ab的值,即可得矩形ABCD的面积.
【详解】
设AB=CD=a,AD=BC=b
∵S△ABE=6
∴AB×BE=6
∴BE=
∴EC=b﹣
∵S△EFC=2
∴EC×CF=2
∴CF=
∴DF=a﹣
∵S△ADF=5
∴AD×DF=5
∴b(a﹣)=10
∴(ab)2﹣26ab+120=0
∴ab=20或ab=6(不合题意舍去)
∴矩形ABCD的面积为20
故答案为20
此题考查了面积与等积变换的知识以及直角三角形与矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时, S=2;当<t≤时,S=.
【解析】
(1)由勾股定理得出AB=10,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;
(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可;
(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PNYH,如图4所示,②当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2,③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
【详解】
解:(1)∵∠ACB=90°,AC=8,BC=1,
∴AB==10,
∵S△ABC=AC•BC=AB•CD,
∴AC•BC=AB•CD,即:8×1=10×CD,
∴CD=;
(2)在Rt△ADC中,AD=,BD=AB−AD=,
当点N在线段CD上时,如图1所示:
∵矩形PQMN,PQ总保持与AC垂直,
∴PN∥AC,
∴∠NPD=∠CAD,
∵∠PDN=∠ADC,
∴△PDN∽△ADC,
∴,即:,
解得:PD=,
∴t=AD−PD=;
当点Q在线段CD上时,如图2所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△DPQ∽△DBC,
∴,即:,
解得:DP=,
∴t=AD+DP=,
∴当矩形PQMN与线段CD有公共点时,t的取值范围为:≤t≤;
(3)当Q在AC上时,如图3所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△APQ∽△ABC,
∴,即:,
解得:AP=,
当0<t<时,重叠部分是矩形PNYH,如图4所示:
∵PQ∥BC,
∴△APH∽△ABC,
∴,即:,
∴PH=,
∴S=PH•PN=;
当≤t≤时,重合部分是矩形PNMQ,S=PQ•PN=2;
当<t≤时,如图5中重叠部分是五边形PQMJI,
易得△PDI∽△ACB∽△JNI,
∴,即:,
∴PI=(−t)•,
∴,即:,
∴JN=,
S=S矩形PNMQ−S△JIN=2−·()·[1−(−t)•]=.
本题属于四边形综合题,考查了勾股定理解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
25、(1),答案见解析;(2)不等式组无解,答案见解析.
【解析】
(1)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)去分母得:,
解得:,
;
(2)
由①得:x>2,
由②得:x<−1,
则不等式组无解.
本题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
26、见解析
【解析】
由已知条件易得AD∥BC,由此可得∠D=∠FCE,结合DE=CE,∠AED=∠FEC,即可证得△ADE≌△FCE,由此即可得到AE=FE.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠D=∠FCE,
∵点E是CD的中点,
∴DE=CE,
∵∠AED=∠FEC,
∴△ADE≌△FCE,
∴AE=FE.
熟悉平行四边形的性质和全等三角形的判定与性质”是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年江苏省盱眙县九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省泰州市名校数学九年级第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省兰考县数学九年级第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。