2024-2025学年浙江省宁波市东方中学数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,若AC⊥BD则四边形EFGH为( )
A.平行四边形B.菱形C.矩形D.正方形
2、(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠DBC的度数是( )
A.36°B.45°C.54°D.72°
3、(4分)如图,在矩形中,平分,交边于点,若,,则矩形的周长为( )
A.11B.14C.22D.28
4、(4分)如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为( )
A.4B.3C.2D.1
5、(4分)下列图形中,中心对称图形有
A.B.C.D.
6、(4分)一次函数y=kx+b(k<0,b>0)的图象可能是( )
A. B. C. D.
7、(4分)把函数与的图象画在同一个直角坐标系中,正确的是( )
A.B.
C.D.
8、(4分)等边三角形的边长为2,则该三角形的面积为( )
A.4B.C.2D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于的方程无解,则的值为________.
10、(4分)一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.
11、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
12、(4分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.
13、(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.
那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).
三、解答题(本大题共5个小题,共48分)
14、(12分)某商店经销某种玩具,该玩具每个进价 20 元,为进行促销,商店制定如下“优惠” 方案:如果一次销售数量不超过 5 个,则每个按 50 元销售:如果一次销售数量超过 5 个,则每增加一个,所有玩具均降低 1 元销售,但单价不得低于 30 元,一次销售该玩具的单价 y(元)与销售数量 x(个)之间的函数关系如下图所示.
(1)结合图形,求出 m 的值;射线 BC 所表示的实际意义是什么;
(2)求线段 AB 满足的 y 与 x 之间的函数解析式,并直接写出自变量的取值范围;
(3)当销售 15 个时,商店的利润是多少元.
15、(8分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).
(1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;
(2)求△OAB的边AB上的中线的长.
16、(8分)如图,已知的三个顶点坐标为,,.
(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标 ;
(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标 ;
(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标 .
17、(10分)某校为了了解学生孝敬父母的情况(选项:A为父母洗一次脚;B帮父母做一次家务;C给父母买一件礼物;D其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中m,n,p的值,并补全条形统计图.
(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?
18、(10分)已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知x=2时,分式的值为零,则k=__________.
20、(4分)分解因式:m2﹣9m=_____.
21、(4分)如图所示,数轴上点A所表示的数为a,则a的值是____.
22、(4分)化简3﹣2=_____.
23、(4分)如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)用纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数)
(1)根据题意,填写下表:
(2)设在甲复印店复印收费元,在乙复印店复印收费元,分别写出,关于的函数关系式;
(3)顾客如何选择复印店复印花费少?请说明理由.
25、(10分)如图,中,、两点在对角线上,且.
求证:.
26、(12分)如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先由三角形的中位线得到四边形EFGH是平行四边形,再证明EH⊥EF,由此证得四边形EFGH为矩形.
【详解】
如图,连接AC、BD,
∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,
∴HG∥AC,EF∥AC,且,EH∥BD,
∴HG∥EF,HG=EF,
∴四边形EFGH是平行四边形,
∵AC⊥BD,
∴EH⊥EF,
∴四边形EFGH为矩形.
故选:C.
此题考查平行四边形的判定,矩形的判定,这里的连线是关键,由连接对角线将四边形分为了三角形,再根据中点证得平行四边形,进而证得矩形.
2、A
【解析】
由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.
【详解】
解:设∠A=x°,
∵BD=AD,
∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,
∵BD=BC,
∴∠BDC=∠BCD=2x°,
∵AB=AC,
∴∠ABC=∠BCD=2x°,
在△ABC中x+2x+2x=180,
解得:x=36,
∴∠C=∠BDC=72°,
∴∠DBC=36°,
故选:A.
此题考查了等腰三角形的性质;熟练掌握等腰三角形的性质,以及三角形内角和定理,得到各角之间的关系式解答本题的关键.
3、C
【解析】
根据勾股定理求出DC=4,证明BE=AB=4,即可求出矩形的周长;
【详解】
∵四边形ABCD是矩形,
∴∠C=90°,AB=CD;AD∥BC;
∵ED=5,EC=3,
∴DC =DE−CE=25−9,
∴DC=4,AB=4;
∵AD∥BC,
∴∠AEB=∠DAE;
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴BE=AB=4,
矩形的周长=2(4+3+4)=22.
故选C
此题考查矩形的性质,解题关键在于求出DC=4
4、B
【解析】
试题解析:假如平行四边形ABCD是矩形,
OA=OC,OB=OD,AC=BD,
∴OA=OB=1.
故选B.
点睛:对角线相等的平行四边形是矩形.
5、B
【解析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选:B.
本题考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、C
【解析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.
【详解】
∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一象限.
故答案为:C.
考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
7、D
【解析】
根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.
【详解】
解:函数中,所以其图象过一、三象限,函数中,所以其图象的两支分别位于第一、三象限,符合的为D选项.
故选D.
本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键.
8、B
【解析】
∵等边三角形高线即中点,AB=2,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴AD=,
∴S△ABC=BC⋅AD=×2×=,
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.
【详解】
去分母得:3x−2=2x+2+m,
由分式方程无解,得到x+1=0,即x=−1,
代入整式方程得:−5=−2+2+m,
解得:m=−5,
故答案为-5.
此题考查分式方程的解,解题关键在于掌握运算法则.
10、4或
【解析】
解:①当第三边是斜边时,第三边的长的平方是:32+52=34;
②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,
故答案是:4或.
11、20
【解析】
先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
【详解】
解:设y与x之间的函数关系式为y=kx+b,由函数图象,得
,
解得: ,
则y=﹣0.1x+1.
当x=150时,
y=﹣0.1×150+1=20(升).
故答案为20
本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
12、
【解析】
设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.
【详解】
设A坐标为(x,y),
∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,
∴x+5=0+3,y+0=0-3,
解得:x=-2,y=-3,即A(-2,-3),
设过点A的反比例解析式为y=,
把A(-2,-3)代入得:k=6,
则过点A的反比例解析式为y=,
故答案为y=.
此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.
13、小于
【解析】
根据图形中的数据即可解答本题.
【详解】
解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,
∴凸面向上”的可能性 小于“凹面向上”的可能性.,
故答案为:小于.
本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
三、解答题(本大题共5个小题,共48分)
14、(1)25、当一次销售数量超过 25 个时,每个均按 30 元销售;(2)线段 AB 满足的 y 与 x 之间的函数解析式是 y=-x+55(5≤x≤25);(3)此时商店的利润为300元.
【解析】
(1)根据单价不得低于30元,即可求出m,所以BC表示当销量超过 25 个时,每个均按 30 元销售,
(2)待定系数法即可求解,
(3)将x=15代入解析式中即可求解.
【详解】
(1)m=5+(50-30)÷1=25 ,
射线BC 所表示的实际意义为当一次销售数量超过25 个时,每个均按 30 元销售,
故答案为:25、当一次销售数量超过 25 个时,每个均按 30 元销售;
(2)设线段 AB 满足的 y 与 x 之间的函数解析式为 y=kx+b, ,得 ,
即线段 AB 满足的 y 与 x 之间的函数解析式是 y=-x+55(5≤x≤25);
(3)当 y=15 时,15=-x+55,得 x=40,
∴此时商店的利润为:15×[40 -20]=300(元)
本题考查了一次函数实际应用问题,属于简单题,注意分段考虑函数关系是解题关键.
15、 (1)k=﹣,b=;(2)AB边上的中线长为.
【解析】
(1)由A、B两点的坐标利用待定系数法可求得k、b的值;
(2)由A、B两点到y轴的距离相等可知直线AB与y轴的交点即为线段AB的中点,利用(1)求得的解析式可求得中线的长.
【详解】
(1)∵点A、B都在一次函数y=kx+b图象上,
∴把(2,1)、(﹣2,4)代入可得 ,解得 ,
∴k=﹣,b=;
(2)如图,设直线AB交y轴于点C,
∵A(2,1)、B(﹣2,4),
∴C点为线段AB的中点,
由(1)可知直线AB的解析式为y=﹣x+,
令x=0可得y=,
∴OC=,即AB边上的中线长为.
此题考查一次函数图象上点的坐标特征,解题关键在于利用待定系数法求解
16、(1);(2);(3)或或.
【解析】
(1)根据题意作出图形,即可根据直角坐标系求出坐标;
(2)根据题意作出图形,即可根据直角坐标系求出坐标;
(3)根据平行四边形的性质作出图形即可写出.
【详解】
解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;
(2)如图点的对应点的坐标;
(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:
或或
此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.
17、(5)555;(5)56,96,5.55;(5)555.
【解析】
试题分析:(5)由选项D的频数58,频率5.5,根据频数、频率和总量的关系即可求得这次被调查的学生人数.
(5)由(5)求得的这次被调查的学生人数,根据频数、频率和总量的关系即可求得表中m,n,p的值,补全条形统计图.
(5)应用用样本估计总体计算即可.
试题解析:(5)∵,
∴这次被调查的学生有555人.
(5).
补全条形统计图如图:
(5)∵,
∴估计该校全体学生中选择B选项的有555人.
考点:5.频数、频率统计表;5.条形统计图;5.频数、频率和总量的关系;5.用样本估计总体.
18、135º.
【解析】
在直角△ABC中,由勾股定理求得AC的长,在△ACD中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ACD是不是直角三角形.
【详解】
解:∵∠B=90°,AB=BC=2,
∴AC==2,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2,
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠DAB=45°+90°=135°.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-6
【解析】
由题意得:6+k=0,解得:k=-6.
故答案:-6.
【方法点睛】本题目是一道考查分式值为0的问题,分式值为0:即当分子为0且分母不为0.从而列出方程,得解.
20、m(m﹣9)
【解析】
直接提取公因式m即可.
【详解】
解:原式=m(m﹣9).
故答案为:m(m﹣9)
此题主要考查了提公因式法分解因式,关键是正确找出公因式.
21、
【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
【详解】
∵直角三角形的两直角边为1,2,
∴斜边长为,
那么a的值是:﹣.
故答案为.
此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
22、
【解析】
直接合并同类二次根式即可.
【详解】
原式=(3﹣2)=.
故答案为.
本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
23、6
【解析】
首先在Rt△ABC中,∠A=90°,AB=3,BC=5,根据勾股定理,求出AC=4,然后求出以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6,阴影部分的面积为2π+-(-6),即为6.
【详解】
解:∵在Rt△ABC中,∠A=90°,AB=3,BC=5,
∴
以AC为直径的半圆面积为2π,
以AB为直径的半圆面积为,
以BC为直径的半圆面积为,
Rt△ABC的面积为6
阴影部分的面积为2π+-(-6),即为6.
此题主要考查勾股定理和圆面积公式的运用,熟练掌握,即可得解.
二、解答题(本大题共3个小题,共30分)
24、(1)1,3.3;(2);(3)当复印的页数大于60时,选择乙;小于60页时,选择甲;等于60页时,两家都可以,见解析
【解析】
(1)根据收费标准,列代数式求得即可;
(2)根据收费等于每页收费乘以页数即可求得;当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得,当一次复印页数超过20时,根据题意求得;
(3)分三种情况分别计算自变量的取值,从而做出判断.
【详解】
解:(1)当时,甲复印店收费为:0.元,
当时,乙复印店收费为:元;
故答案为:1,3.3;
(2);
;
(3)①当时,即:,解得:;
②当时,即:,解得:;
③当时,即:,解得:;
因此,当时,乙的花费少,当时,甲、乙的花费相同,当时,甲的花费少.
答:当复印的页数大于60时,选择乙;小于60页时,选择甲;等于60页时,两家都可以.
考查一次函数的图象和性质、分段函数的实际意义等知识,正确的理解题意是关键,分类讨论思想方法的应用才是问题显得全面.
25、见解析
【解析】
证明△ADF≌△CBE,根据全等三角形的对应角相等即可证得∠AFD=∠CEB,进而得出∠AFE=∠CEF,即可得出结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=CB.
∴∠ADF=∠CBE.
在△ABE和△CDF中
∴△ADF≌△CBE(SAS),
∴∠AFD=∠CEB,
∵∠AFE=180°-∠AFD,∠CEF=180°-∠CEB,
∴∠AFE=∠CEF,
∴.
本题考查了平行四边形的性质,全等三角形和平行线的判定,理解同位角相等两直线平行是解题关键.
26、(1)y=;(2)点F的坐标为(2,4);(3)∠AOF=∠EOC,理由见解析;(4)P的坐标是(,0)或(-5,0)或(,0)或(5,0)
【解析】
(1)设反比例函数的解析式为y=,把点E(3,4)代入即可求出k的值,进而得出结论;
(2)由正方形AOCB的边长为4,故可知点D的横坐标为4,点F的纵坐标为4,由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(4,3),由点D在直线上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标;
(3)在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG,设直线EG的解析式为y=mx+n,把E(3,4),G(4,2)代入即可求出直线EG的解析式,故可得出H点的坐标,在Rt△AOF中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE,即OG是等腰三角形底边EF上的中线,所以OG是等腰三角形顶角的平分线,由此即可得出结论;
(4)分△PDQ的三个角分别是直角,三种情况进行讨论,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,即可构造全等的直角三角形,设出P的坐标,根据点在图象上,则一定满足函数的解析式即可求解,
【详解】
解:
(1)设反比例函数的解析式y=,
∵反比例函数的图象过点E(3,4),
∴4=,即k=12,
∴反比例函数的解析式y=;
(2)∵正方形AOCB的边长为4,
∴点D的横坐标为4,点F的纵坐标为4,
∵点D在反比例函数的图象上,
∴点D的纵坐标为3,即D(4,3),
∵点D在直线y=﹣x+b上,
∴3=﹣×4+b,
解得:b=5,
∴直线DF为y=﹣x+5,
将y=4代入y=﹣x+5,
得4=﹣x+5,
解得:x=2,
∴点F的坐标为(2,4),
(3)∠AOF=∠EOC,理由为:
证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,
,
∴△OAF≌△OCG(SAS),
∴∠AOF=∠COG,
,
∴△EGB≌△HGC(ASA),
∴EG=HG,
设直线EG:y=mx+n,
∵E(3,4),G(4,2),
∴,
解得,
∴直线EG:y=﹣2x+10,
令y=﹣2x+10=0,得x=5,
∴H(5,0),OH=5,
在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5,
∴OH=OE,
∴OG是等腰三角形底边EH上的中线,
∴OG是等腰三角形顶角的平分线,
∴∠EOG=∠GOH,
∴∠EOG=∠GOC=∠AOF,
即∠AOF=∠EOC;
(4)当Q在D的右侧(如图1),且∠PDQ=90°时,作DK⊥x轴,作QL⊥DK,于点L,
则△DPK≌△QDK,
设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),
把(7,-1+a)代入y=得:
7(-1+a)=12,
解得:a=,
则P的坐标是(,0);
当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
则△QDL≌△PDK,
则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,
则Q的坐标是(1,7-b),代入y=得:
b=-5,
则P的坐标是(-5,0);
当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
则△QDL≌△PQK,则DK=DL=3,
设Q的横坐标是c,则纵坐标是,
则QK=QL=,
又∵QL=c-4,
∴c-4=,
解得:c=-2(舍去)或6,
则PK=DL=DR-LR=DR-QK=3-=1,
∴OP=OK-PK=6-1=5,
则P的坐标是(5,0);
当Q在D的左侧(如图3),且∠DQP=90°时,不成立;
当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,
则△DPR≌△PQK,
∴DR=PK=3,RP=QK,
设P的坐标是(d,0),
则RK=QK=d-4,
则OK=OP+PK=d+3,
则Q的坐标是(d+3,d-4),代入y=得:
(d+3)(d-4)=12,
解得:d=或(舍去),
则P的坐标是(,0),
综上所述,P的坐标是(,0)或(-5,0)或(,0)或(5,0),
本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
一次复印页数(页
5
10
20
30
甲复印店收费(元
0.5
2
3
乙复印店收费(元
0.6
1.2
2.4
2024-2025学年山东省王浩屯中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年山东省王浩屯中学数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
2024-2025学年临沂市重点中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年临沂市重点中学数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省无锡市东湖塘中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年江苏省无锡市东湖塘中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。