2024年安徽省阜阳市十校联考数学九上开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为( )
A.4B.9C.10D.4+
2、(4分)如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程( )
A.B.
C.D.
3、(4分)不等式组的解集是x>1,则m的取值范围是( )
A.m≥1B.m≤1C.m≥0D.m≤0
4、(4分)一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
A.2B.3C.5D.7
5、(4分)若,两点都在直线上,则与的大小关系是( )
A.B.C.D.无法确定
6、(4分)以下列各组数为边长,不能构成直角三角形的是( )
A.3,4,5B.9,12,15C.,2,D.0.3,0.4,0.5
7、(4分)如图,中,,垂直平分,垂足为,,且,,则的长为( )
A.B.C.D.
8、(4分)式子,,,,中是分式的有
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:_________
10、(4分)有一个质地均匀的正方体,其六个面上分别写着直角梯形、等腰梯形、矩形、正方形、菱形、平行四边形,投掷这个正方体后,向上的一面的图形是对角线相等的图形的概率是_______;
11、(4分)正方形的边长为2,点是对角线上一点,和是直角三角形.则______.
12、(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是_________.
13、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图(图中的数字表示每一级台阶的高度,单位cm).已知数据15、16、16、14、14、15的方差S甲2=,数据11、15、18、17、10、19的方差S乙2=.
请你用学过的统计知识(平均数、中位数、方差和极差)通过计算,回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
15、(8分)如图,在中,,,.点从点出发沿方向以每秒个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒().过点作于点,连接、.
(1)的长是 ,的长是 ;
(2)在、的运动过程中,线段与的关系是否发生变化?若不变化,那么线段与是何关系,并给予证明;若变化,请说明理由.
(3)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,说明理由.
16、(8分)计算:(﹣1)2018+﹣×+(2+)(2﹣)
17、(10分)某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40
(1)这组数据的平均数为 ,中位数为 ,众数为 .
(2)用哪个值作为他们年龄的代表值较好?
18、(10分)如图所示,在△ABC中,点D为BC边上的一点,AD=12,BD=16,AB=20,CD=1.
(1)试说明AD⊥BC.
(2)求AC的长及△ABC的面积.
(3)判断△ABC是否是直角三角形,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.
20、(4分)在直角梯形中,,如果,,,那么对角线__________.
21、(4分)如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.
22、(4分)如图,四边形是矩形 ,是延长线上的一点,是上一点,;若,则 = ________ .
23、(4分)计算的结果等于__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,已知是的外角,有以下三个条件:①;②∥;③.
(1)在以上三个条件中选两个作为已知,另一个作为结论写出一个正确命题,并加以证明.
(2)若∥,作的平分线交射线于点,判断的形状,并说明理由
25、(10分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)
26、(12分)某市米厂接到加工大米任务,要求天内加工完大米.米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲、乙两车间各自加工大米数量与甲车间加工时间(天)之间的关系如图1所示;未加工大米与甲车间加工时间(天)之间的关系如图2所示,请结合图像回答下列问题
(1)甲车间每天加工大米__________;=______________;
(2)直接写出乙车间维修设备后,乙车间加工大米数量与(天)之间的函数关系式,并指出自变量的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.
【详解】
作CE⊥AD于点E,如下图所示,
由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,
∴ =5,
解得,AD=5,
又∵BC∥AD,∠A=90°,CE⊥AD,
∴∠B=90°,∠CEA=90°,
∴四边形ABCE是矩形,
∴AE=BC=2,
∴DE=AD−AE=5−2=3,
∴CD==,
∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,
故选D.
此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算
2、B
【解析】
设,则,根据矩形面积公式列出方程.
【详解】
解:设,则,
由题意,得.
故选:.
考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
3、D
【解析】
表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.
【详解】
解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.
故选D.
本题考查了不等式组的解集的确定.
4、C
【解析】
分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
5、C
【解析】
根据一次函数的性质进行判断即可.
【详解】
解:∵直线的K=2>0,
∴y随x的增大而增大,
∵-4<-2,
∴.
故选C.
本题考查了一次函数的增减性,当K>0时,y随x的增大而增大,当K<0时,y随x的增大而减小.
6、C
【解析】
通过边判断构成直角三角形必须满足,两短边的平方和=长边的平方.即通过勾股定理的逆定理去判断.
【详解】
A. ,能构成直角三角形
B.,构成直角三角形
C. ,不构成直角三角形
D. ,构成直角三角形
故答案为C
本题考查了勾股定理的逆定理:如果三角形的的三边满足 ,那么这个三角形为直角三角形.
7、D
【解析】
先根据勾股定理求出AC的长,再根据DE垂直平分AC得出FA的长,根据相似三角形的判定定理得出△AFD∽△CBA,由相似三角形的对应边成比例即可得出结论.
【详解】
解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,
∴AC=,
∵DE垂直平分AC,垂足为F,
∴FA=AC=,∠AFD=∠B=90°,
∵AD∥BC,
∴∠A=∠C,
∴△AFD∽△CBA,
∴,
即,
解得AD=,
故选D.
本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
8、B
【解析】
,,,,中分式有,两个,其它代数式分母都不含有字母,故都不是分式.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据同分母的分式相加减的法则计算即可.
【详解】
原式=.
故答案为:1.
本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.
10、
【解析】
【分析】先求出总的情况和对角线相等的情况,再根据概率公式可求得.
【详解】因为,出现的图形共有6种情况,对角线相等的有(等腰梯形,正方形,矩形)3这情况,所以,P(对角线相等)=
故答案为:
【点睛】本题考核知识点:概率.解题关键点:掌握概率的求法.
11、或.
【解析】
根据勾股定理得到BD=AC=,根据已知条件得到当点E是对角线的交点时,△EAD、△ECD是等腰直角三角形,求得DE=BD=,当点E与点B重合时,△EAD、△ECD是等腰直角三角形,得到DE=BD=.
【详解】
解:∵正方形ABCD的边长为2,
∴BD=AC=,
∵点E是对角线BD上一点,△EAD、△ECD是直角三角形,
∴当点E是对角线的交点时,△EAD、△ECD是等腰直角三角形,
∴DE=BD=,
当点E与点B重合时,△EAD、△ECD是等腰直角三角形,
∴DE=BD=,
故答案为:或.
本题考查了正方形的性质,等腰直角三角形的判定和性质,分类讨论是解题的关键.
12、1
【解析】
首先根据已知易求CD=1,利用角平分线的性质可得点D到AB的距离是1.
【详解】
∵BC=6,BD=4,
∴CD=1.
∵∠C=90°,AD平分∠CAB,
∴点D到AB的距离=CD=1.
故答案为:1.
此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等;本题比较简单,属于基础题.
13、4cm
【解析】
在▱ABCD中
∵BC=AD=6cm,AO=CO,
∵AC⊥BC,
∴∠ACB=90°,
∴AC==8cm,
∴AO=AC=4cm;
故答案为4cm.
三、解答题(本大题共5个小题,共48分)
14、(1)相同点:两段台阶路台阶高度的平均数相同;不同点:两段台阶路台阶高度的中位数、方差和极差均不相同;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm(原平均数)使得方差为1.
【解析】
(1)分别求出 甲、乙两段台阶路的高度平均数、中位数、极差即可比较;
(2)根据方差的性质解答;
(3)根据方差的性质提出合理的整修建议.
【详解】
(1)(1)甲段台阶路的高度平均数=×(15+16+16+14+14+15)=15,
乙段台阶路的高度平均数=×(11+15+18+17+11+19)=15;
甲段台阶路的高度中位数是15,乙段台阶路的高度中位数是=16;
甲段台阶路的极差是16-14=2,乙段台阶路的极差是19-11=8,
∴相同点:两段台阶路台阶高度的平均数相同.
不同点:两段台阶路台阶高度的中位数、方差和极差均不相同.
(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.
(3)整修建议:每个台阶高度均为15cm(原平均数)使得方差为1.
本题考查的是平均数、方差,掌握算术平均数的计算公式、方差的计算公式是解题的关键.
15、(1),;(2)与平行且相等;(3)当时,四边形为菱形
【解析】
(1)在Rt△ABC中,∠C=30°,则AC=2AB,根据勾股定理得到AC和AB的值.
(2)先证四边形AEFD是平行四边形,从而证得AD∥EF,并且AD=EF,在运动过程中关系不变.
(3)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得.
【详解】
(1)解:在中,,,
根据勾股定理得:,,
,;
(2)与平行且相等.
证明:在中,,,,.
又,.,,.四边形为平行四边形.
与平行且相等.
(3)解:能;
理由如下:,,.
又,四边形为平行四边形.
,,.
若使平行四边形为菱形,则需,即,解得:.
即当时,四边形为菱形.
本题考查勾股定理、菱形的判定及平行四边形的判定与性质,解题的关键是掌握勾股定理的使用、菱形的判定及平行四边形的判定与性质.
16、1
【解析】
先计算乘方、利用性质1、二次根式的乘法、平方差公式计算,再计算加减可得.
【详解】
解:原式=1+3﹣+4﹣3
=4﹣3+4﹣3
=1.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及平方差公式.
17、(1),17,17;(2)众数.
【解析】
(1)根据平均数、中位数和众数的求法,进行计算,即可得到答案;
(2)因为众数最具有代表性,所以选择众数.
【详解】
解:(1)这组数据的平均数为=,
中位数为=17,
众数为17;
故答案为:,17,17;
(2)用众数作为他们年龄的代表值较好.
本题考查平均数、中位数和众数,解题的关键是掌握平均数、中位数和众数的求法.
18、(1)见解析;(2)15,150;(3)是
【解析】
试题分析:(1)根据勾股定理的逆定理即可判断;
(2)先根据勾股定理求得斜边的长,再根据直角三角形的面积公式即可求得结果;
(3)根据勾股定理的逆定理即可判断.
(1)
∴是直角三角形
∴即;
(2)∵,且点为边上的一点
∴
∴由勾股定理得:
∴;
(3)是直角三角形
,
∴是直角三角形.
考点:本题考查的是勾股定理,直角三角形的面积公式,勾股定理的逆定理
点评:解答本题的根据是熟练掌握勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6<v<2或v=4.2
【解析】
利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.
【详解】
解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).
将(0,1)、(30,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=2x+1;
将(0,1)、(70,420)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=6x+1;
将(0,1)、(50,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=4.2x+1.
观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.
故答案为6<v<2或v=4.2
本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.
20、
【解析】
过点D作交BC于点E,首先证明四边形ABED是矩形,则,进而求出EC的长度,然后在含30°的直角三角形中求出DE的长度,最后利用勾股定理即可求出BD的长度.
【详解】
过点D作交BC于点E,
∵,
,
.
,
,
∴四边形ABED是矩形,
,
.
,
,
,
,
.
故答案为:.
本题主要考查矩形的判定及性质,含30°的直角三角形的性质和勾股定理,掌握矩形的判定及性质,含30°的直角三角形的性质和勾股定理是解题的关键.
21、
【解析】
由矩形的性质可证明S△DFP=S△PBE,即可求解.
【详解】
解:作PM⊥AD于M,交BC于N.
则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
∴S△DFP=S△PBE=×2×5=5,
∴S阴=5+5=10,
故答案为:10.
本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.
22、
【解析】
分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.
详解:∵四边形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
设∠ECD=x,则∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°.
故答案为:23°.
点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.
23、1
【解析】
分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.
详解:原式=()2-()2
=6-1
=1,
故答案为:1.
点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.
二、解答题(本大题共3个小题,共30分)
24、(1)①③作为条件,②作为结论,见解析;(2)等腰三角形,见解析
【解析】
(1)根据题意,结合平行线的性质,选择两个条件做题设,一个条件做结论,得到正确的命题;
(2)作出图形,利用平行线的性质和角平分线的定义证明即可.
【详解】
(1)证明:∵,
∴,,
∵,
∴,
∴AC=BC
(2)是等腰三角形,理由如下:
如图:
∵,
∴
∵BF平分,
∴,
∴,
∴BC=FC,
∴是等腰三角形
本题考查的是平行线的性质以及角平分线的性质,本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.
25、需要m的铁棍.
【解析】
根据图中的几何关系,然后由菱形的四边相等可以求出答案.
【详解】
由题意,知两个大菱形的边长为: (m) .
小菱形的边长为: (m) .
所以三个菱形的周长的和为:(m) .
所以所需铁棍的总长为:1.8×9+2.4×2+2=m .
答:需要m的铁棍.
本题考查了菱形的性质及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.
26、解:(1);; (2),
【解析】
(1)由图2可知,乙停工后,第二天均为甲生产的即186-161=20;第一天总共生产220-181=31,即a+20=31,所以a为11;
(2)由图1可知,函数关系式经过点(2,11)和点(1,120),即可得到函数关系式.且 2≤x≤1.
【详解】
解:(1)由图2可知,乙停工后,第二天均为甲生产的,即186-161=20;
∴甲车间每天加工大米20t
第一天总共生产:220-181=31,
即a+20=31,所以a为11;
故答案为20(t),11
(2)设函数关系式y=kx+b
由图1可知,函数关系式经过点(2,11)和点(1,120),
代入得:y=31x-11,且 2≤x≤1.
本题主要考查一次函数的知识点,熟练掌握一次函数的性质是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024年安徽省蚌埠市九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024年安徽省蚌埠市九上数学开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省德州市八校九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年山东省德州市八校九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省镇江丹徒区七校联考数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省镇江丹徒区七校联考数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。