2024年安徽省六安市裕安区九年级数学第一学期开学经典试题【含答案】
展开这是一份2024年安徽省六安市裕安区九年级数学第一学期开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数的图象不经过哪个象限( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根 长为 1 米的竹竿的影长为 0.4 米,同时另一名同学测量树的高度时, 发现树的影子不全落在地面上,有一部分落在教学楼的第一级台 阶水平面上,测得此影子长为 0.2 米,一级台阶高为 0.3 米,如图 所示,若此时落在地面上的影长为 4.4 米,则树高为( )
A.11.8 米B.11.75 米
C.12.3 米D.12.25 米
3、(4分)在下述命题中,真命题有( )
(1)对角线互相垂直的四边形是菱形;(2)三个角的度数之比为的三角形是直角三角形;(3)对角互补的平行四边形是矩形;(4)三边之比为的三角形是直角三角形..
A.个B.个C.个D.个
4、(4分)下列是一次函数的是( )
A.B.C.D.
5、(4分)将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为( )
A.4B.12﹣4C.12﹣6D.6
6、(4分)y=(m﹣1)x|m|+3m表示一次函数,则m等于( )
A.1B.﹣1C.0或﹣1D.1或﹣1
7、(4分)不等式 的正整数解的个数是( )
A.7个B.6个C.4个D.0个
8、(4分)如图,将菱形竖直位置的对角线向右平移acm,水平位置的对角线向上平移bcm,平移后菱形被分成四块,最大一块与最小一块的面积和记为,其余两块的面积和为,则与的差是( )
A.abcm2B.2abcm2C.3abcm2D.4abcm2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.
10、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______.
11、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.
12、(4分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____
13、(4分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,则不等式的解集为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)用适当的方法解下列方程:
(1)5x2=4x
(2)(x+1)(3x﹣1)=0
15、(8分)如图,在正方形网格中,每一个小正方形的边长为1.△ABC的三个顶点都在格点上,A、C的坐标分别是(﹣4,6),(﹣1,4).
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC向右平移6个单位的△A1B1C1,并写出C1的坐标 ;
(3)请画出△ABC关于原点O对称的△A2B2C2 , 并写出点C2的坐标 .
16、(8分)如图,中,,,的垂直平分线交于点,交于点,,于点,求的长.
17、(10分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.
(1)求点A的坐标及直线的函数表达式;
(2)连接,求的面积.
18、(10分)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图图(a)、图(b)、图(c)中分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)画一个底边长为4,面积为8的等腰三角形.
(2)画一个面积为10的等腰直角三角形.
(3)画一个一边长为,面积为6的等腰三角形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
20、(4分)若,则=______
21、(4分)当x=1时,分式的值是_____.
22、(4分)若分式方程有增根,则a的值为_____.
23、(4分)若是一元二次方程的解,则代数式的值是_______
二、解答题(本大题共3个小题,共30分)
24、(8分)天坛是明清两代皇帝每年祭天和祈祷五谷丰收的地方,以其严谨的建筑布局、奇特的建筑构造和瑰丽的建筑装饰著称于世,被列为世界文化遗产.
小惠同学到天坛公园参加学校组织的综合实践活动,她分别以正东,正北方向为x轴,y轴的正方向建立了平面直角坐标系描述各景点的位置.
小惠:“百花园在原点的西北方向;表示回音壁的点的坐标为”
请依据小惠同学的描述回答下列问题:
请在图中画出小惠同学建立的平面直角坐标系;
表示无梁殿的点的坐标为______;
表示双环万寿亭的点的坐标为______;
将表示祈年殿的点向右平移2个单位长度,再向下平移个单位长度,得到表示七星石的点,那么表示七星石的点的坐标是______.
25、(10分)如图,直线AB的函数解析式为y=-2x+8,与x轴交于点A,与y轴交于点B。
(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接E,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围。
26、(12分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.
(1)请问今年A型智能手表每只售价多少元?
(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一次函数的性质一次项系数小于0,则函数一定经过二,四象限,常数项-1<0,则一定与y轴负半轴相交,据此即可判断.
【详解】
解:∵k=-1<0,b=-1<0
∴一次函数的图象经过二、三、四象限
一定不经过第一象限.
故选:A.
本题主要考查了一次函数的性质,对性质的理解一定要结合图象记忆.
2、A
【解析】
在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.据此可构造出相似三角形.
【详解】
根据题意可构造相似三角形模型如图,
其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;
延长FE交AB于G,则Rt△ABC∽Rt△AGF,
∴AG:GF=AB:BC=物高:影长=1:0.4
∴GF=0.4AG
又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,
∴GF=4.6
∴AG=11.5
∴AB=AG+GB=11.8,即树高为11.8米.
此题考查相似三角形的应用,解题关键在于画出图形.
3、C
【解析】
根据矩形、菱形、直角三角形的判定定理对四个选项逐一分析.
【详解】
解:(1)对角线平分且互相垂直的四边形是菱形,故错误;
(2)180°÷8×4=90°,故正确;
(3)∵平行四边形的对角相等,又互补,
∴每一个角为90°
∴这个平行四边形是矩形,故正确;
(4)设三边分别为x,x:2x,
∵
∴由勾股定理的逆定理得,
这个三角形是直角三角形,故正确;
∴真命题有3个,
故选:C.
本题考查的知识点:矩形、菱形、直角三角形的判定,解题的关键是熟练掌握这几个图形的判定定理.
4、B
【解析】
根据一次函数的定义条件进行逐一分析即可.
【详解】
A. 中自变量次数不为1,不是一次函数;
B. ,是一次函数;
C. 中自变量次数不为1,不是一次函数;
D. 中没有自变量次数不为1,不是一次函数.
故选:B
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
5、B
【解析】
过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.
【详解】
解:过点B作BM⊥FD于点M,
在△ACB中,∠ACB=90°,∠A=45°,AC=12,
∴BC=AC=12.
∵AB∥CF,
∴BM=BC×sin45°=
CM=BM=12,
在△EFD中,∠F=90°,∠E=30°,
∴∠EDF=60°,
∴MD=BM÷tan60°=,
∴CD=CM﹣MD=12﹣.
故选B.
本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.
6、B
【解析】
由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.
7、B
【解析】
先解不等式求得不等式的解集,再确定正整数解即可.
【详解】
3(x+1)>2(2x+1)-6
3x+3>4x+2-6
3x-4x>2-6-3
-x>-7
x<7
∴不等式的正整数解为1、2、3、4、5、6,共6个.
故选B.
本题考查了求一元一次不等式的正整数解,正确求得不等式的解集是解决本题的关键.
8、D
【解析】
作HK关于AC的对称线段GL,作FE关于BD的对称线段IJ,由对称性可知,图中对应颜色的部分面积相等,即可求解.
【详解】
解:如图,作HK关于AC的对称线段GL,作FE关于BD的对称线段IJ,
由对称性可知,图中对应颜色的部分面积相等,
∴s1与s2的差=4SOMNP,
∵OM=a,ON=b,
∴4SOMNP=4ab,
故选:D.
本题考查菱形的性质,图形的对称性;通过作轴对称图形,将面积进行转化是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(5,-)或(5,-).
【解析】
由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.
【详解】
∵AE分△ABC的面积比为1:2,点E在线段BC上,
∴BE:CE=1:2或BE:CE=2:1.
∵B(5,1),C(5,-6),
∴BC=1-(-6)=2.
当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);
当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).
故答案为:(5,-)或(5,-).
本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.
10、2.5
【解析】
∵EO是AC的垂直平分线,
∴AE=CE,
设CE=x,则ED=AD-AE=4-x,
在Rt△CDE中,CE2=CD2+ED2,
即x2=22+(4-x)2,
解得x=2.5,
即CE的长为2.5,
故答案为2.5.
11、2
【解析】
证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴OE是△ABC的中位线,
∴OE=AB=2,
故答案为:2.
此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.
12、4
【解析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB==.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,
故答案为4.
考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.
13、
【解析】
根据直线y=kx+b与y轴交于点B(1,1),以及函数的增减性,即可求出不等式kx+b>1的解集.
【详解】
解:∵直线y=kx+b与x轴交于点A(3,1),与y轴交于点B(1,1),
∴y随x的增大而减小,
∴不等式kx+b>1的解集是x<1.
故答案为x<1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标
三、解答题(本大题共5个小题,共48分)
14、(1)x1=0,x2=;(2)x1=﹣1,x2=.
【解析】
(1)先移项,然后利用因式分解法解方程;
(2)利用因式分解法解方程.
【详解】
解:(1)由原方程,得x(5x﹣4)=0,
则x=0或5x﹣4=0,
解得x1=0,x2=;
(2)(x+1)(3x﹣1)=0,
x+1=0或3x﹣1=0,
x1=﹣1,x2=.
本题考查了因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学转化思想).
15、 (1)见解析;(2)见解析; (5,4) ;(3)见解析; (1,-4).
【解析】
(1)根据A、C两点的坐标建立平面直角坐标系即可;
(2)根据图形平移的性质画出△A1B1C1′,然后写出点C1坐标;
(3)分别作出点A、B、C关于原点O的对称点A2、B2、C2,连接A2、B2、C2即可得到△ABC关于原点O对称的△A2B2C2,然后写出点C2坐标.
【详解】
解:(1)如图,建立平面直角坐标系;
(2)如图,△A1B1C1为所作;点C1的坐标为(5,4) ;
(3)如图,△A2B2C2为所作;点C2的坐标为(1,-4).
故答案为:(1)见解析;(2)见解析; (5,4) ;(3)见解析; (1,-4).
本题考查旋转变换及平移变换,熟知图形经过旋转及平移后与原图形全等是解题的关键.
16、.
【解析】
连接 ,根据垂直平分线的性质得到,由 得到,再根据勾股定理得到答案.
【详解】
连接
∵垂直平分,∴
∴
∵,∴
∴
∴,
设,则
∴,即,
在中,∵,∴
设,则,∴
∴,即
本题考查垂直平分线的性质、勾股定理,解题的关键是掌握垂直平分线的性质、勾股定理.
17、 (1) ;(2)1.
【解析】
(1)将x=-1代入得出纵坐标,从而得到点A的坐标;再用待定系数法求得直线的函数表达式;
(2)连接,先根据解析式求得B,C,D的坐标,得出BO,CD的长,然后利用割补法求的面积,.
【详解】
解:(1)因为点A在直线上,且横坐标为,所以点A的纵坐标为,所以点A的坐标为.
因为直线过点A,所以将代入,得,解得,所以直线的函数表达式为.
(2)如图,连接BC,
由直线,的函数表达式,易得点B的坐标为,点D的坐标为,点C的坐标为,所以.
所以.
本题主要考查了两直线相交问题,要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长,对不规则的三角形面积可以使用割补法等方法.
18、(1)见解析;(2)见解析;(3)见解析
【解析】
(1)利用三角形面积求法以及等腰三角形的性质画出底边长为4,高为4的等腰三角形即可;
(2)利用三角形面积求法以及等腰三角形的性质画出直角边长为2的等腰直角三角形即可;
(3)利用三角形面积求法以及等腰三角形的性质画出底边长为2,高为3的等腰三角形即可.
【详解】
解:(1)如图(a)所示:
(2)如图(b)所示 :
(3)如图(c)所示 :
本题考查了应用与设计作图,主要利用了三角形的面积公式、等腰三角形的定义、以及勾股定理,都是基本作图,难度不大.熟练掌握勾股定理是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
【详解】
解:由折叠可得,EF=AE,BF=AB.
∵△FDE的周长为8,△FCB的周长为22,
∴DF+AD=8,FC+CB+AB=22,
∴平行四边形ABCD的周长=8+22=30,
∴AB+BC=BF+BC=15,
又∵△FCB的周长=FC+CB+BF=22,
∴CF=22-15=1,
故答案为:1.
本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
20、
【解析】
设=k,同x=2k,y=4k,z=5k,再代入中化简即可.
【详解】
设=k,
x=2k,y=4k,z=5k
=.
故答案是:.
考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.
21、
【解析】
将代入分式,按照分式要求的运算顺序计算可得.
【详解】
当时,原式.
故答案为:.
本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.
22、3
【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.
【详解】
解:分式方程去分母得:x﹣5(x﹣3)=a,
由分式方程有增根,得到x﹣3=0,即x=3,
把x=3代入整式方程得:a=3,
故答案为:3
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
23、-3
【解析】
将代入到中即可求得的值.
【详解】
解:是一元二次方程的一个根,
,
.
故答案为:.
此题主要考查了一元二次方程的解(根的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
二、解答题(本大题共3个小题,共30分)
24、画平面直角坐标系见解析;,;.
【解析】
(1)直接利用回音壁的点的坐标为(0,-2),得出原点位置,建立平面直角坐标系即可;
(2)利用所画平面直角坐标系得出各点坐标即可;
(3)利用平移的性质得出七星石的点的坐标.
【详解】
画出平面直角坐标系如图;
表示无梁殿的点的坐标为点;
表示双环万寿亭的点的坐标为;
故答案为,;
表示七星石的点的坐标是.
故答案为.
本题考查了平移变换以及用坐标表示地理位置,正确建立平面直角坐标系是解题的关键.
25、(1)A(4,0),B(0,8);(2)S△PAO=−4m+16(0
(1)利用待定系数法即可解决问题;
(2)连接OP,根据三角形的面积公式S△PAO=×OA×PE计算即可;
【详解】
(1)令x=0,则y=8,
∴B(0,8),
令y=0,则−2x+8=0,
∴x=4,
∴A(4,0),
(2)连接OP.
∵点P(m,n)为线段AB上的一个动点,
∴−2m+8=n,∵A(4,0),
∴OA=4,
∴0
26、(1)180元;(2)方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.
【解析】
(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+60)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型a只,则B型(100-a)只,获利y元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.
【详解】
解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+60)元,
根据题意得 ,解得:x=180,
经检验,x=180是原方程的根,
答:今年A型智能手表每只售价180元;
(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100-a)只,
根据题意得,W=(180-130)a+(230-150)(100-a)=-30a+8000,
∵100-a≤3a,∴a≥25,
∵-30<0,W随a的增大而减小,
∴当a=25时,W增大=-30×25+8000=7250元,
此时,进货方案为新进A型手表25只,新进B型手表75只,
答:方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.
此题考查分式方程的应用,一次函数的运用,解题关键在于由销售问题的数量关系求出一次函数的解析式是关键.
题号
一
二
三
四
五
总分
得分
批阅人
A型智能手表
B型智能手表
进价
130元/只
150元/只
售价
今年的售价
230元/只
相关试卷
这是一份2024年安徽省合肥市蜀山区数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省六安市裕安中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=+2的顶点是,下列图象能表示y是x的函数的是等内容,欢迎下载使用。
这是一份2023-2024学年安徽省六安市裕安区数学八上期末学业质量监测试题含答案,共7页。试卷主要包含了在、、、、中分式的个数有.等内容,欢迎下载使用。