2024年安徽省芜湖繁昌县联考九上数学开学调研试题【含答案】
展开
这是一份2024年安徽省芜湖繁昌县联考九上数学开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式错误的是( )
A.B.C.D.
2、(4分)下列图形中,既是轴对称图形又是中心对称图形的是
A.B.C.D.
3、(4分)下列说法正确的是( ).
A.的平方根是B.是81的一个平方根
C.0.2是0.4的算术平方根D.负数没有立方根
4、(4分)将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是( )
A.向上平移3个单位 B.向下平移3个单位
C.向左平移7个单位 D.向右平移7个单位
5、(4分)若在反比例函数的图像上,则下列结论正确的是( )
A.B.
C.D.
6、(4分)如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CDB.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
7、(4分)利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是( )
A.B.C.D.
8、(4分)矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为( )
A.12B.24C.48D.50
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的根为________.
10、(4分)如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________
11、(4分)如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.
12、(4分)已知一个样本中共5个数据,其中前四个数据的权数分别为0.2,0.3,0.2,0.1,则余下的一个数据对应的权数为________.
13、(4分)命题“对角线相等的四边形是矩形”的逆命题是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,AB=4,BC=3,以BD为腰作等腰△BDE交DC的延长线于点E,求BE的长.
15、(8分)某服装店为了鼓励营业员多销售服装,在原来的支付月薪方式(y1):每月底薪600元,每售出一件服装另支付4元的提成,推出第二种支付月薪的方式(y2),如图所示,设x(件)是一个月内营业员销售服装的数量,y(元)是营业员收入的月薪,请结合图形解答下列问题:
(1)求y1与y2的函数关系式;
(2)该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的?
(3)如果你是营业员,你会如何选择支付薪水的方式?为什么?
16、(8分)已知直线y=kx+b经过点A(0,1),B(2,5).
(1)求直线AB的解析式;
(2)若直线y=﹣x﹣5与直线AB相交于点C.求点C的坐标;并根据图象,直接写出关于x的不等式﹣x﹣5<kx+b的解集.
(3)直线y=﹣x﹣5与y轴交于点D,求△ACD的面积.
17、(10分)如图,已知直线 :与x轴,y轴的交点分别为A,B,直线 : 与y轴交于点C,直线与直线的交点为E,且点E的横坐标为2.
(1)求实数b的值;
(2)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线与直线于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.
18、(10分)我县某中学开展“庆十一”爱国知识竞赛活动,九年级(1)、(2)班各选出名选手参加比赛,两个班选出的名选手的比赛成绩(满分为100分)如图所示。
(1)根据图示填写如表:
(2)请你计算九(1)和九(2)班的平均成绩各是多少分。
(3)结合两班竞赛成绩的平均数和中位数,分析哪个班级的竞赛成绩较好
(4)请计算九(1)、九(2)班的竞赛成绩的方差,并说明哪个班的成绩比较稳定?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)点与点关于轴对称,则点的坐标是__________.
20、(4分)已知,是二元一次方程组的解,则代数式的值为_____.
21、(4分)如图,在菱形中,,菱形的面积为15,则菱形的对角线之和为__.
22、(4分)某汽车在某一直线道路上行驶,该车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE).
根据图中提供的信息,给出下列四种说法:
①汽车共行驶了120千米;
②汽车在行驶途中停留了0.5小时;
③汽车在行驶过程中的平均速度为千米/小时;
④汽车自出发后3小时至4.5小时之间行驶的速度不变.
其中说法正确的序号分别是_____(请写出所有的).
23、(4分)菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角标系中,△ABC的三个顶点坐标为A(-3,1)、B(-4,-3)、C(-1,-4),△ABC绕原点顺时针旋转180°,得到△A1B1C1再将△A1B1C1向左平移5个单位得到△A1B1C1.
(1)画出△A1B1C1,并写出点A的对应点A1的坐标;
(1)画出△A1B1C1,并写出点A的对应点A1的坐标;
(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转,平移后点P的对应点分别为P1、P1,请直接写出点P1的坐标.
25、(10分)已知:a,b,c为一个直角三角形的三边长,且有,求直角三角形的斜边长.
26、(12分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5cm,AP=8cm,求△APB的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
A、根据相反向量的和等于,可以判断A;
B、根据的模等于0,可以判断B;
C、根据交换律可以判断C;
D、根据运算律可以判断D.
【详解】
解:A、,故A错误;
B、||=0,故B正确;
C、,故C正确;
D、,故D正确.
故选:A.
此题考查平面向量,解题关键在于运算法则
2、D
【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;
B. 不是轴对称图形,是中心对称图形,故不符合题意;
C. 是轴对称图形,但不是中心对称图形,故不符合题意;
D. 既是轴对称图形又是中心对称图形,故符合题意.
故选D.
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.
3、B
【解析】
依据平方根、算术平方根、立方根的性质解答即可.
【详解】
A.的平方根是±,故A错误,;
B. −9是81的一个平方根,故B正确,;
C. 0.04的算术平方根是0.2,故C错误,;
D. 负数有立方根,故D错误.
故选:B.
此题考查平方根,算术平方根,立方根,解题关键在于掌握运算法则.
4、C
【解析】
按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.
【详解】
依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.
故选C.
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
5、D
【解析】
将点A(a,b)代入反比例函数的解析式,即可求解.
【详解】
解:∵A(a,b)在反比例函数的图象上,
∴,即ab=-2<1,
∴a与b异号,
∴<1.
故选D.
本题考查了反比例函数图象上点的坐标特征,函数图象上的点,一定满足函数的解析式.
6、A
【解析】
由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.
【详解】
解:∵AC=AD,BC=BD,
∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,
∴AB是CD的垂直平分线.
即AB垂直平分CD.
故选:A.
此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.
7、A
【解析】
根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.
【详解】
选项A,是轴对称图形,不是中心对称图形,故可以选;
选项B,是轴对称图形,也是中心对称图形,故不可以选;
选项C,不是轴对称图形,是中心对称图形,故不可以选;
选项D,是轴对称图形,也是中心对称图形,故不可以选.
故选A
本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.
8、C
【解析】
设矩形的两邻边长分别为3x、4x,根据勾股定理可得(3x)2+(4x)2=102,解方程求得x的值,即可求得矩形两邻边的长,根据矩形的面积公式即可求得矩形的面积.
【详解】
∵矩形的两邻边之比为3:4,
∴设矩形的两邻边长分别为:3x,4x,
∵对角线长为10,
∴(3x)2+(4x)2=102,
解得:x=2,
∴矩形的两邻边长分别为:6,8;
∴矩形的面积为:6×8=1.
故选:C.
本题考查了矩形的性质及勾股定理,利用勾股定理求得矩形两邻边的长是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
运用因式分解法可解得.
【详解】
由得
故答案为:
考核知识点:因式分解法解一元二次方程.
10、;
【解析】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.
【详解】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.
故答案为
本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k
相关试卷
这是一份2024年安徽省芜湖市九上数学开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年芜湖无为县联考数学九上开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年安徽省合肥瑶海区四校联考数学九上开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。