2024年安徽省芜湖市南陵县数学九上开学质量检测试题【含答案】
展开
这是一份2024年安徽省芜湖市南陵县数学九上开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)的值等于
A.3B.C.D.
2、(4分)下列方程中,一元二次方程的是( )
A.=0B.(2x+1)(x﹣3)=1
C.ax2+bx=0D.3x2﹣2xy﹣5y2=0
3、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC
4、(4分)如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,1.则EB的长是( )
A.0.5B.1C.1.5D.2
5、(4分)如图,在▱ABCD中,AC与BD交于点O,下列说法正确的是( )
A.AC=BDB.AC⊥BDC.AO=COD.AB=BC
6、(4分)直角三角形中,斜边,,则的长度为( )
A.B.C.D.
7、(4分)如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是( )
A.△是等腰三角形,
B.折叠后∠ABE和∠CBD一定相等
C.折叠后得到的图形是轴对称图形
D.△EBA和△EDC一定是全等三角形
8、(4分)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一个直角三角形的两条直角边的长分别为6cm、8cm,则它的斜边的中线长________cm.
10、(4分)直线y=x+2与x轴的交点坐标为___________.
11、(4分)如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.
12、(4分)如图,在中,是的角平分线,,垂足为E,,则的周长为________.
13、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组并将解集在数轴上表示出来.
15、(8分)一辆汽车和一辆摩托车分别从,两地去同一城市,它们离地的路程随时间变化的图象如图所示,根据图象中的信息解答以下问题:
(1),两地相距______;
(2)分别求出摩托车和汽车的行驶速度;
(3)若两图象的交点为,求点的坐标,并指出点的实际意义.
16、(8分)如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;
(2)以点A为对称中心,请画出△ AOB关于点A成中心对称的△ A O2 B2,并写点B2的坐标;
(1)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2 O B1.
17、(10分)如图,已知△ABC和△DEC都是等腰直角三角形, ,连接AE.
(1)如图(1),点D在BC边上,连接AD,ED延长线交AD于点F,若AB=4,求△ADE的面积
(2)如图2,点D在△ABC的内部,点M是AE的中点,连接BD,点N是BD中点,连接MN,NE,求证且.
18、(10分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.
(1)求k的值与B点的坐标;
(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)与最简二次根式是同类二次根式,则__________.
20、(4分)如图,函数y1=ax和y2=-x+b的图象交于点P,则根据图象可得,二元一次方程组的解是______.
21、(4分)如图,已知,,,当时,______.
22、(4分)如图,在▱ABCD中,,在边AD上取点E,使,则等于______度.
23、(4分)命题“对角线相等的四边形是矩形”的逆命题是_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形ABCD的边OA在x轴上,将平行四边形沿对角线AC对折,AO的对应线段为AD,且点D,C,O在同一条直线上,AD与BC交于点E.
(1)求证:△ABC≌△CDA.
(2)若直线AB的函数表达式为,求三角线ACE的面积.
25、(10分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.
(1)求证:BC=BD;
(2)若BC=15,AD= 20,求AB和CD的长.
26、(12分)如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.
(1)求这两个函数的表达式;
(2)求△AOB的面积S.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
.故选A.
2、B
【解析】
试题分析:根据一元二次方程的定义:
A、x2+=0是分式方程;
B、(2x﹣1)(x+2)=1,即2x2+3x﹣3=0是一元二次方程;
C、ax2+bx=0中a=0时,不是一元二次方程;
D、3x2﹣2xy﹣5y2=0是二元二次方程;
故选B.
考点:一元二次方程的定义
3、C
【解析】
矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.
所以选项A,B,D正确,C错误.
故选C.
4、B
【解析】
直接利用菱形的性质得出AD的长,再利用勾股定理得出AE的长,进而利用平移的性质得出答案.
【详解】
解:∵有一块菱形纸片ABCD,DC=5,
∴AD=BC=5,
∵DE=2,∠DEA=90°,
∴AE=4,
则BE=5﹣4=2.
故选:B.
此题主要考查了图形的剪拼以及菱形的性质,正确得出AE的长是解题关键.
5、C
【解析】
试题分析:由平行四边形的性质容易得出结论.
解:∵四边形ABCD是平行四边形,
∴AO=CO;
故选C.
6、A
【解析】
根据题意,是直角三角形,利用勾股定理解答即可.
【详解】
解:根据勾股定理,在中,
故选A
本题考查勾股定理的运用,属于基础题型,熟练掌握勾股定理是解答本题的关键.
7、B
【解析】
根据长方形的性质得到∠BAE=∠DCE=90°,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△EBA≌△EDC,根据等腰三角形的性质即可得到结论,依此可得A、C、D正确;无法判断∠ABE和∠CBD是否相等.
【详解】
∵四边形ABCD为长方形
∴∠BAE=∠DCE=90°,AB=CD,
在△EBA和△EDC中,
∵∠AEB=∠CED,∠BAE=∠DCE, AB=CD,
∴△EBA≌△EDC (AAS),
∴BE=DE,
∴△EBD为等腰三角形,
∴折叠后得到的图形是轴对称图形,
故A、C、D正确,
无法判断∠ABE和∠CBD是否相等,B选项错误;
故选B.
本题考查全等三角形的判定与性质以及等腰三角形的判定和性质,熟练掌握折叠的性质得出全等条件是解题的关键.
8、B
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项正确;
C、不是轴对称图形,是中心对称图形,故本选项错误;
D、是轴对称图形,也是中心对称图形,故本选项错误.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
绘制符合题意的直角三角形,并运用勾股定理,求出其斜边的长度,再根据直角三角形斜边上的中线长度等于斜边长度的一半求解.
【详解】
解:如下图所示,假设符合题意,其中BC=6cm,AC=8cm,∠C=90°,点D为AB的中点.
由勾股定理可得:==10(cm)
又∵点D为AB的中点
∴CD==1(cm)
故答案为:1.
本题考查了勾股定理(直角三角形两条直角边的平方和等于斜边的平方),直角三角形斜边上的中线长度是斜边长度的一半,其中后者是解本题的关键.
10、(-2,0)
【解析】
令纵坐标为0代入解析式中即可.
【详解】
当y=0时,0=x+2,解得:x=-2,
∴直线y=x+2与x轴的交点坐标为(-2,0).
点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.
11、
【解析】
连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.
【详解】
解:如图,连接BF
∵△ABC为等边三角形,AD⊥BC,AB=6,
∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
∵△CEF为等边三角形
∴CF=CE,∠FCE=60°
∴∠FCE=∠ACB
∴∠BCF=∠ACE
∴在△BCF和△ACE中
BC=AC,∠BCF=∠ACE,CF=CE
∴△BCF≌△ACE(SAS)
∴∠CBF=∠CAE=30°,AE=BF
∴当DF⊥BF时,DF值最小
此时∠BFD=90°,∠CBF=30°,BD=3
∴DF=BD=
故答案为:.
本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.
12、;
【解析】
在△ACD、△ADE、△DEC都是含有30°的直角三角形,利用边之间的关系,得出各边长,从而得出△ABC的周长.
【详解】
∵∠C=90°,∠B=30°,DE=1
∴在Rt△DEB中,DB=2,EB=
∵AD是∠CAB的角平分线
∴CD=DE=1,∠CAD=∠DAE=30°
∴在Rt△ACD中,AD=2,
同理,在Rt△ADE中,AD=2,AE=
∴△ABC的周长=AE+EB+BD+DC+CA=3+3
故答案为:3+3.
本题考查含30°角的直角三角形、角平分线的性质,解题关键是得出△ACD、△ADE、△DEC都是含有30°的直角三角形.
13、2
【解析】
根据题意先确定x的值,再根据中位数的定义求解.
【详解】
解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为2,根据题意得:
解得x=2,
将这组数据从小到大的顺序排列1,2,2,2,12,
处于中间位置的是2,
所以这组数据的中位数是2.
故答案为2.
本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
三、解答题(本大题共5个小题,共48分)
14、1<x≤1.
【解析】
分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
【详解】
,
由①得,x≤1,
由②得,x>1,
故不等式组的解集为:1<x≤1.
在数轴上表示为:
.
15、(1)20;(2),; (3)即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地).
【解析】
(1)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地相距20km;
(2)根据图象可知,摩托车4小时行驶160千米,汽车3小时行驶180千米,利用速度=路程÷时间即可分别求出摩托车和汽车的行驶速度;
(3)分别求出摩托车和汽车离A地的路程y(km)随时间x(h)变化的函数解析式,再将它们联立组成方程组,解方程组得到点P的坐标,然后指出点P的实际意义.
【详解】
解:(1)由图象可知,A,B两地相距20km.
故填:20;
(2)根据图像汽车的速度为
摩托车的速度为
(3)设汽车行驶图像对应的一次函数的表达式为.根据题意,把已知的两点
坐标和代入,
解得,.
这个一次函数表达式为
同理解得摩托车对应的一次函数的表达式为
由题意解方程组
得,
即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地)
本题考查了一次函数的应用,一次函数解析式的确定,路程、速度与时间关系的应用,坐标确定位置,两直线的交点坐标求法,以及函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.
16、(1)如图所示:△A1O1B1为所求作的三角形;见解析;(2)如图所示:为所求作的三角形,见解析;(-1,4);(1)如图所示:为所求作的三角形;见解析.
【解析】
(1)先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形;
(2)关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分得特点,找到关键点的对应点,再顺次连接对应点即可得到平移后的图形;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得到B点的坐标;
(1)先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到对应点A2O, B1,最后顺次连接,顺次连接得出旋转后的图形.
【详解】
解:(1)如图所示:先将A,B,O三点向右平移4个单位长度,得到A1 ,O1, B1,最后顺次连接,即可得到:为所求作的三角形;
(2)如图所示:先将A,B,O以点A为对称中心,得到A,O2, B2最后顺次连接,即可得到:为所求作的三角形,(-1,4);
(1)如图所示:先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到A2,O, B1,最后顺次连接,即可得到:为所求作的三角形;
本题主要考查了利用旋转变换,平移变换以及中心对称进行作图,解题时注意:关于x轴的对称点的横坐标不变,纵坐标互为相反数.关于y轴的对称点的横坐标互为相反数,纵坐标不变.
17、(1)2;(2)证明见详解.
【解析】
(1)由等腰直角三角形的性质,即可得到CE=DE=AF=,然后根据面积公式即可得到答案;
(2)如图2中,延长EN至F使NF=NE,连接AF、BF,先证明△DNE≌△BNF,再证明△ABF≌△ACE,推出∠FAB=∠EAC,可得∠FAE=∠FAB+∠BAE=∠BAE+∠EAC=90°,由此即可解决问题.
【详解】
解:(1)∵△ABC和△DEC都是等腰直角三角形,
∴AB=AC,DE=EC,∠B=∠ACB=∠EDC=∠ECD=45°,
∵,
∴AD⊥BC,
∴△ABD是等腰直角三角形,
∴AF=,
∵
∴四边形AFEC是矩形,
∴CE=AF=DE=2,
∴;
(2)如图2中,延长EN至F使NF=NE,连接AF、BF.
在△DNE和△BNF中,,
∴△DNE≌△BNF,
∴BF=DE=EC,∠FBN=∠EDN,
∵∠ACB=∠DCE=45°,
∴∠ACE=90°-∠DCB,
∴∠ABF=∠FBN-∠ABN
=∠BDE-∠ABN
=180°-∠DBC-∠DGB-∠ABN
=180°-∠DBC-∠DCB-∠CDE-∠ABN
=180°-(∠DBC+∠ABN)-∠DCB-45°
=180°-45°-45°-∠DCB=90°-∠DCB=∠ACE,
在△ABF和△ACE中,,
∴△ABF≌△ACE.
∴∠FAB=∠EAC,AE=AF
∴∠FAE=∠FAB+∠BAE=∠BAE+∠EAC=90°,
∵N为FE中点,M为AE中点,
∴AF∥NM,MN=AF,ME=AE
∴MN⊥AE,MN=ME.
即且.
本题考查全等三角形的判定和性质、等腰直角三角形、勾股定理、三角形中位线等知识,解题的关键是添加辅助线,构造全等三角形,学会添加辅助线的方法,属于中考压轴题.
18、(1)k=11,B(2,1);(1)D1(3,1)或D1(3,2)或D3(3,-1).
【解析】
(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=2代入反比例函数解析式求得相应的y的值,即得点B的坐标;
(1)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.
【详解】
(1)把点A(3,4)代入y=(x>0),得
k=xy=3×4=11,
故该反比例函数解析式为:y=.
∵点C(2,0),BC⊥x轴,
∴把x=2代入反比例函数y=,得
y==1.
则B(2,1).
综上所述,k的值是11,B点的坐标是(2,1).
(1)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.
∵A(3,4)、B(2,1)、C(2,0),
∴点D的横坐标为3,yA-yD=yB-yC即4-yD=1-0,故yD=1.
所以D(3,1).
②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.
∵A(3,4)、B(2,1)、C(2,0),
∴点D的横坐标为3,yD′-yA=yB-yC即yD-4=1-0,故yD′=2.
所以D′(3,2).
③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.
∵A(3,4)、B(2,1)、C(2,0),
∴xD″-xB=xC-xA即xD″-2=2-3,故xD″=3.
yD″-yB=yC-yA即yD″-1=0-4,故yD″=-1.
所以D″(3,-1).
综上所述,符合条件的点D的坐标是:(3,1)或(3,2)或(3,-1).
此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(1)题时,采用了“数形结合”和“分类讨论”的数学思想.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.
【详解】
解:∵,
∴m+1=2,
∴m=1.
故答案为1.
本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.
20、
【解析】
先根据函数图象确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解.
【详解】
解:由图可得,函数y1=ax和y2=-x+b的图象交于点P(2,3),
∴二元一次方程组的解是,
故答案为:.
本题考查了一次函数与二元一次方程(组),解题时注意:方程组的解就是两个相应的一次函数图象的交点坐标.
21、1或
【解析】
求出直线AB的解析式,设直线x=2交直线AB于点E,可得,再根据三角形面积公式列出方程求解即可.
【详解】
解:如图,
∵A(0,2),B(6,0),
∴直线AB的解析式为
设直线x=2交直线AB于点E,则可得到,
由题意:
解得m=1或
故答案为:1或
本题考查了坐标与图形的性质,解题的关键是学会构建一次函数解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
22、1
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=×(180°-50°)=1°,
∴∠ECB=130°-1°=1°.
故答案为1.
本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.
23、矩形的对角线相等
【解析】
根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,原命题的条件是对角线相等,结论是矩形,互换即可得解.
【详解】
原命题的条件是:对角线相等的四边形,结论是:矩形;
则逆命题为矩形的对角线相等.
此题主要考查对逆命题的理解,熟练掌握,即可解题.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见详解;(2)
【解析】
(1)利用平行四边形的性质及折叠的性质,可得出CD=AB,∠DCA=∠BAC,结合AC=CA可证出△ABC≌△CDA(SAS);
(2)由点D,C,O在同一直线上可得出∠DCA=∠OCA=90°,利用一次函数图象上点的坐标特征可得出点A的坐标及OA的长度,由OC∥AB可得出直线OC的解析式为y=x,进而可得出∠COA=45°,结合∠OCA=90°可得出△AOC为等腰直角三角形,利用等腰直角三角形的性质可得出OC、AC的长,结合(1)的结论可得出四边形ABDC为正方形,再利用正方形的面积公式结合S△ACE=S正方形ABDC可求出△ACE的面积.
【详解】
(1)证明:∵四边形ABCO为平行四边形,
∴AB=CO,AB∥OC,
∴∠BAC=∠OCA.
由折叠可知:CD=CO,∠DCA=∠OCA,
∴CD=AB,∠DCA=∠BAC.
在△ABC和△CDA中,
,
∴△ABC≌△CDA(SAS).
(2)解:∵∠DCA=∠OCA,点D,C,O在同一直线上,
∴∠DCA=∠OCA=90°.
当y=0时,x-1=0,解得:x=1,
∴点A的坐标为(1,0),OA=1.
∵OC∥AB,
∴直线OC的解析式为y=x,
∴∠COA=45°,
∴△AOC为等腰直角三角形,
∴AC=OC=.
∵AB∥CD,AB=CD=AC,∠DCA=90°,
∴四边形ABDC为正方形,
本题考查了平行四边形的性质、折叠的性质、全等三角形的判定、等腰直角三角形、一次函数图象上点的坐标特征以及正方形的面积,解题的关键是:(1)利用全等三角形的判定定理SAS证出△ABC≌△CDA;(2)利用一次函数图象上点的坐标特征及等腰直角三角形的性质,求出正方形边长AC的长.
25、(1)证明:∵AB为⊙O的直径,AB⊥CD,∴,∴
(2),
【解析】
试题分析:(1)由于AB为直径且AB⊥CD,由此可知B点将平分,所以,由此推出
(2)∵AB为⊙O的直径,∴,∴,∵,∴,∴,∵AB为⊙O的直径,AB⊥CD,∴
考点:直径垂直平分线的性质,勾股定理的计算
点评:本题难度不大,需要记住的是圆的直径和直角三角形的关系
26、(1)OA:,AB:;(2)
【解析】
(1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;
(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.
【详解】
(1)设直线OA的解析式为y=kx,
把A(3,4)代入得4=3k,解得k=,
所以直线OA的解析式为y=x;
∵A点坐标为(3,4),
∴OA==5,
∴OB=OA=5,
∴B点坐标为(0,-5),
设直线AB的解析式为y=ax+b,
把A(3,4)、B(0,-5)代入得
,解得,
∴直线AB的解析式为y=3x-5;
(2)∵A(3,4),
∴A点到y轴的距离为3,且OB=5,
∴S=×5×3=.
本题主要考查一次函数的交点问题,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年安徽省芜湖市九上数学开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省蒙城数学九上开学教学质量检测试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年安徽省宿州第九中学数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。