2024年北京市昌平临川育人学校九上数学开学联考模拟试题【含答案】
展开这是一份2024年北京市昌平临川育人学校九上数学开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,乙从B地到A地需要( )分钟
A.12B.14C.18D.20
2、(4分)使分式有意义的x的取值范围是( )
A.x≥1B.x≤1C.x≠1D.x>1
3、(4分)若在实数范围内有意义,则x的取值范围是( )
A.x>-4B.x≥-4C.x>-4且x≠1D.x≥-4且x≠-1
4、(4分)若点Α在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为 ( )
A.b>2B.b>-2C.b<2D.b<-2
5、(4分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
A.①②B.②③C.①③D.①④
6、(4分)函数的自变量的取值范围是( )
A.B.C.D.
7、(4分)下列计算错误的是( )
A. =2B.=3C.÷=3D.=1﹣=
8、(4分)如图,将绕点按逆时针方向旋转得到(点的对应点是点,点的对应点是点),连接,若,则的度数为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若是一个完全平方式,则_________.
10、(4分)已知,是关于的方程的两根,且满足,那么的值为________.
11、(4分)分解因式:a3﹣2a2+a=________.
12、(4分)如图,在四边形ABCD中,AB=BC=2,CD=1,AD=3,若∠B=90°,则∠BCD的度数为____________________.
13、(4分)一组数据:23,32,18,x,12,它的中位数是20,则这组数据的平均数为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.
(1)直接写出的坐标;
(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;
(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
15、(8分)珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.
(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;
(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.
16、(8分)为传承中华优秀传统文化,某校团委组织了一次全校名学生参加的“汉字书写”大赛,为了解本次大赛的成绩,校团委随机抽取了其中名学生的成绩(成绩取整数,总分分)作为样本进行统计,制成如下不完整的统计图表:
根据所给信息,解答下列问题:
(1)_____,______;
(2)补全频数直方图;
(3)这名学生成绩的中位数会落在______分数段;
(4)若成绩在分以上(包括分)为“优”等,请你估计该校参加本次比赛的名学生中成绩为“优”等的有多少人。
17、(10分)先化简,再求代数式的值,其中.
18、(10分)某通讯公司推出①、②两种收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(2)何时两种收费方式费用相等?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.
20、(4分)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为_____.
21、(4分)某公司招聘员工一名,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如下表所示:
若公司将面试成绩、笔试成绩分别赋予6和4的权,则被录取的人是__________.
22、(4分)若,则=____
23、(4分)已知,,则的值为___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=3;当x=时,y=1.求x=-时,y的值.
25、(10分)如图,在平面直角坐标系中,函数的图象经过点A(1,4)和点B,过点A作AC⊥x轴,垂足为点C,过点B作BD⊥y轴,垂足为点D,连结AB、BC、DC、DA,点B的横坐标为a(a>1)
(1)求k的值
(2)若△ABD的面积为4;
①求点B的坐标,
②在平面内存在点E,使得以点A、B、C、E为顶点的四边形是平行四边形,直接写出符合条件的所有点E的坐标.
26、(12分)如图,中,,两点在对角线上,.
(1)求证:;
(2)当四边形为矩形时,连结、、,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据题意,得到路程和甲的速度,然后根据相遇问题,设乙的速度为x,列出方程求解,然后即可求出乙需要的时间.
【详解】
解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,
∴甲的速度是:1÷6=千米/分钟,
由纵坐标看出AB两地的距离是16千米,
设乙的速度是x千米/分钟,由题意,得:
10x+16×=16,
解得:x=,
∴乙从B地到A地需要的时间为:(分钟);
故选:A.
本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.
2、C
【解析】
分式的分母不为零,即x-1≠1.
【详解】
解:当分母x-1≠1,即x≠1时,分式有意义;
故选:C.
从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
3、D
【解析】
直接利用二次根式有意义的条件结合分式有意义的条件进行求解即可得.
【详解】
若在实数范围内有意义,
则x+4≥0且x+1≠0,
解得:x≥-4且x≠-1,
故选D.
本题考查了二次根式有意义的条件和分式有意义的条件,正确把握相关知识是解题关键.
4、D
【解析】
分析:由点(m,n)在一次函数的图像上,可得出3m+b=n,再由3m-n>1,即可得出b<-1,此题得解.
详解:
∵点A(m,n)在一次函数y=3x+b的图象上,
∴3m+b=n.
∵3m-n>1,
∴3m-(3m+b)>1,即-b>1,
∴b<-1.
故选D.
点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n>1,得出-b>1是解题的关键.
5、D
【解析】
试题解析:∵AE=AB,
∴BE=2AE,
由翻折的性质得,PE=BE,
∴∠APE=30°,
∴∠AEP=90°﹣30°=60°,
∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,
∴∠EFB=90°﹣60°=30°,
∴EF=2BE,故①正确;
∵BE=PE,
∴EF=2PE,
∵EF>PF,
∴PF<2PE,故②错误;
由翻折可知EF⊥PB,
∴∠EBQ=∠EFB=30°,
∴BE=2EQ,EF=2BE,
∴FQ=3EQ,故③错误;
由翻折的性质,∠EFB=∠EFP=30°,
∴∠BFP=30°+30°=60°,
∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,
∴∠PBF=∠PFB=60°,
∴△PBF是等边三角形,故④正确;
综上所述,结论正确的是①④.
故选D.
考点:1.翻折变换(折叠问题);2.矩形的性质.
6、B
【解析】
根据分母为零无意义,可得答案.
【详解】
解:由题意,得,
解得,
故选:B.
本题考查了函数自变量的取值范围,利用分母不等于零得出不等式是解题关键.
7、D
【解析】
分析:根据二次根式的化简及计算法则即可得出答案.
详解:A、 =2,正确;B、=3,正确;C、÷=3,正确;D、,错误;故选D.
点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.
8、B
【解析】
根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.
【详解】
解:
如图示,将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,
∴∠BAB′=∠CAC′=120°,AB=AB′,
∴,
∵AC′∥BB′,
∴∠C′AB′=∠AB′B=30°,
故选:B.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
利用完全平方公式的结构特征确定出k的值即可
【详解】
解:∵是完全平方式,
∴k=±30,
故答案为.
本题考查了完全平方式,熟练掌握完全平方的特点是解决本题的关键.
10、或
【解析】
根据根与系数的关系求出+与·的值,然后代入即可求出m的值.
【详解】
∵,是关于的方程的两根,
∴+=2m-2,·=m2-2m,
代入,得
m2-2m+2(2m-2)=-1,
∴m2+2m-3=0,
解之得
m=或.
故答案为:或.
本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .
11、a(a﹣1)1
【解析】
试题分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.a3﹣1a1+a=a(a1﹣1a+1)=a(a﹣1)1.故答案为a(a﹣1)1.
考点:提公因式法与公式法的综合运用.
12、135°
【解析】
根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,进而得出答案.
【详解】
连接AC,
在Rt△ABC中,由勾股定理得:,
∵AB=BC,
∴∠BAC=∠ACB=45°,
∵CD=1,AD=3,AC=2,
∴AC2+CD2=AD2,
∴∠ACD=90°,
∴∠DCB=90°+45°=135°,
故答案为:135°.
本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.
13、1
【解析】
根据23,32,18,x,12,它的中位数是20,可求出x的值,再根据平均数的计算方法计算得出结果即可.
【详解】
解:∵23,32,18,x,12,它的中位数是20,
∴x=20,
平均数为:(23+32+18+20+12)÷5=1,
故答案为:1.
本题考查中位数、平均数的意义和求法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.
三、解答题(本大题共5个小题,共48分)
14、(1),(2),(3)存在,或
【解析】
(1)求出B,C两点坐标,利用中点坐标公式计算即可. (2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小. (3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.
【详解】
解:(1)∵直线与轴分别交于C、B两点,
∴B(0,6),C(-8,0),
∵CD=DB, ∴D(-4,3).
(2)如图1中,作点B关于直线m的对称点B′(-4,6),连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.
∵C(-8,0),B′(-4,6),
∴直线CB′的解析式为, ∴P(-2,9),
作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,
此时PD′+D′C′+C′E的值最小.
由题意点P向左平移4个单位,向下平移3个单位得到T,
∴T(-6,6), ∴PD′+D′C′+C′E=TC′+PT+C′E=PT+TE=5+6=1.
∴PD′+D′C′+C′E的最小值为1.
(3)如图2中,延长交BK′于J,设BK′交OC于R.
∵B′S′=BS=4,S′K′=SK=,BK′平分∠CBO,
所以,所以OR=3,tan∠OBR= ,
∵∠S′JK′=∠OBR=∠RBC, ∴tan∠S′JK′==,
∴,∵, ∴,所以为的中点,
, ∴,
由旋转的性质可知:,.
①当时,设,
,
解得, 所以.
②当时,同理则有,
整理得:, 解得 ,
所以,
又因为,,所以直线为,
此时在直线上,此时三角形不存在,故舍去.
综上所述,满足条件的点N的坐标为或.
本题属于一次函数综合题,考查了一次函数的性质,轴对称最短问题,垂线段最短,等腰三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题.
15、(1)当选择方案①时,y=144x+2800;当选择方案②时,y=204x+2380;(2)故当0<x<7时,选择方案②;当x=7时,两种方案费用一样;当x>7时,选择方案①
【解析】
(1)根据题意分别列出两种方案的收费方案的函数关系式;
(2)由(1)找到临界点分类讨论即可.
【详解】
(1)当选择方案①时,y=350×8+0.6×240x=144x+2800
当选择方案②时,y=(350×8+240)x×0.85=204x+2380
(2)当方案①费用高于方案②时
144x+2800>204x+2380
解得x<7
当方案①费用等于方案②时
144x+2800=204x+2380
解得x=7
当方案①费用低于方案②时
144x+2800<204x+2380
解得x>7
故当0<x<7时,选择方案②
当x=7时,两种方案费用一样.
当x>7时,选择方案①
本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.
16、 (1)70,0.05;(2)见解析;(3)80≤x<90;(4)625人.
【解析】
(1)根据第一组的频数是30,频率是0.15,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第一组频数除以数据总数可得b的值;
(2)根据(1)的计算结果即可补全频数分布直方图;
(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;
(4)利用总数2500乘以“优”等学生的所占的频率即可.
【详解】
(1)本次调查的总人数为30÷0.15=200,
则a=200×0.35=70,b=10÷200=0.05,
故答案为:70,0.05;
(2)频数分布直方图如图所示,
(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80⩽x<90,
∴这200名学生成绩的中位数会落在80⩽x<90分数段,
故答案为:80⩽x<90;
(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:2500×0.25=625(人).
此题考查频数(率)分布表,频数(率)分布直方图,中位数,解题关键在于看懂图中数据
17、
【解析】
先将括号内式子通分化简,再与右侧式子约分,最后代入求值.
【详解】
解:原式
当时,
原式
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
18、(1);;(2)300分钟.
【解析】
(1)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;
(2)根据(1)的结论列方程解答即可.
【详解】
解:(1)设,,由题意得:将,分别代入即可:
,
,
,
故所求的解析式为;;
(2)当通讯时间相同时,得,解得.
答:通话300分钟时两种收费方式费用相等.
本题考查的是用一次函数解决实际问题,熟悉相关性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1或1或1
【解析】
分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.
【详解】
如图1,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OB=1,
又∵∠AOC=∠BOM=60°,
∴△BOM是等边三角形,
∴BM=BO=1,
∴Rt△ABM中,AM==;
如图2,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OA=1,
又∵∠AOC=60°,
∴△AOM是等边三角形,
∴AM=AO=1;
如图3,当∠ABM=90°时,
∵∠BOM=∠AOC=60°,
∴∠BMO=30°,
∴MO=2BO=2×1=8,
∴Rt△BOM中,BM==,
∴Rt△ABM中,AM==.
综上所述,当△ABM为直角三角形时,AM的长为或或1.故答案为或或1.
20、3.
【解析】
试题分析:由平行四边形ABCD的对角线相交于点O,OE⊥BD,根据线段垂直平分线的性质,可得BE=DE,又由平行四边形ABCD的周长为30,可得BC+CD的长,继而可得△CDE的周长等于BC+CD.
试题解析:∵四边形ABCD是平行四边形,
∴OB=OD,AB=CD,AD=BC,
∵平行四边形ABCD的周长为30,
∴BC+CD=3,
∵OE⊥BD,
∴BE=DE,
∴△CDE的周长为:CD+CE+DE=CD+CE+BE=CD+BC=3.
考点:3.平行四边形的性质;3.线段垂直平分线的性质.
21、乙.
【解析】
根据加权平均数的计算公式进行计算即可.
【详解】
∵甲的面试成绩为86分,笔试成绩为90分,面试成绩和笔试成绩6和4的权,
∴甲的平均成绩的是(分).
∵乙的面试成绩为92分,笔试成绩为83分,面试成绩和笔试成绩6和4的权,
∴乙的平均成绩的是(分).
∵
∴被录取的人是乙
故答案为:乙.
此题考查了加权平均数的计算公式,解题的关键是计算平均数时按6和4的权进行计算.
22、
【解析】
先将变形成|3-a|+(b-2)2=0,根据非负数的性质得到3-a=0,b-2=0,求出a、b的值,然后代入所求代数式即可求出结果.
【详解】
因为,
所以|3-a|+(b-2)2=0,
所以3-a=0,b-2=0,
所以a=3,b=2,
所以=.
考查了非负数的性质,首先根据非负数的性质确定待定的字母的取值,然后代入所求代数式计算即可解决问题.
23、1
【解析】
将写成(x+y)(x-y),然后利用整体代入求值即可.
【详解】
解:∵,,
∴,
故答案为:1.
本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.
二、解答题(本大题共3个小题,共30分)
24、y=-1
【解析】
设,,则,利用待定系数法求出的值,可得,再把代入求解即可.
【详解】
解:设,,则.
把,,,分别代入上式得.
解得,.
∴.
∴当,.
本题考查了正比例函数和反比例函数的问题,掌握正比例函数和反比例函数的性质、待定系数法是解题的关键.
25、(1)1;(2)①(3,),②(3, );(3, );(3,- )
【解析】
(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值;
(2)①设AC,BD交于点M,利用反比例函数图象上点的坐标特征可得出点B的坐标,结合AC⊥x轴,BD⊥y轴可得出BD,AM的长,利用三角形的面积公式结合△ABD的面积为1可求出a的值,进而可得出点B的坐标;
②设点E的坐标为(m,n),分AB为对角线、AC为对角线以及BC为对角线三种情况考虑,利用平行四边形的性质(对角线互相平分)可得出关于m,n的二元一次方程组,解之即可得出点E的坐标.
【详解】
解:(1)∵函数y=(x>0)的图象经过点A(1,1),
∴k=1×1=1.
(2)①设AC,BD交于点M,如图1所示.
∵点B的横坐标为a(a>1),点B在y=的图象上,
∴点B的坐标为(a,).
∵AC⊥x轴,BD⊥y轴,
∴BD=a,AM=AC-CM=1-.
∵△ABD的面积为1,
∴BD•AM=1,即a(1-)=8,
∴a=3,
∴点B的坐标为(3,)
②存在,设点E的坐标为(m,n).
分三种情况考虑,如图2所示.
(i)当AB为对角线时,∵A(1,1),B(3,),C(1,0),
∴ ,解得:,
∴点E1的坐标为(3, );
(ii)当AC为对角线时,∵A(1,1),B(3,),C(1,0),
∴ ,解得:,
∴点E2的坐标为(3, );
(iii)当BC为对角线时,∵A(1,1),B(3,),C(1,0),
∴ ,解得:,
∴点E2的坐标为(3,- ).
综上所述:点E的坐标为(3, );(3, );(3,- ).
本题考查了反比例函数图象上点的坐标特征、三角形的面积以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)①利用三角形的面积公式结合△ABD的面积为1,求出a的值;②分AB为对角线、AC为对角线以及BC为对角线三种情况,利用平行四边形的对角线互相平分求出点E的坐标.
26、(1)证明见解析;(1)1.
【解析】
(1)证明△ABE≌△CDF,根据全等三角形的对应边相等即可证得;
(1)根据四边形AECF为矩形,矩形的对角线相等,则AC=EF,据此即可求解.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∴∠1=∠1.
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴AE=CF.
(1)解:∵四边形AECF为矩形,
∴AC=EF,
∴ ,
又∵△ABE≌△CDF,
∴BE=DF,
∴当四边形AECF为矩形时,=1.
此题考查平行四边形的性质,矩形的性质,理解矩形的对角线相等是解题关键.
题号
一
二
三
四
五
总分
得分
应试者
面试
笔试
甲
86
90
乙
92
83
相关试卷
这是一份北京市北京昌平临川育人学校2023-2024学年九上数学期末监测模拟试题含答案,共9页。试卷主要包含了下列事件,如图所示的工件,其俯视图是, 见解析,B2,C2等内容,欢迎下载使用。
这是一份2023-2024学年北京市昌平临川育人学校九上数学期末统考模拟试题含答案,共8页。试卷主要包含了一元二次方程的解是等内容,欢迎下载使用。
这是一份北京市昌平临川育人学校2023-2024学年数学八上期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。