2024年北京市昌平区九上数学开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,已知,分别为边,的中点,连结,若,则等于( )
A.70ºB.67. 5ºC.65ºD.60º
2、(4分)如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:
则关于甲、乙两人的作法,下列判断正确的为( )
A.仅甲正确B.仅乙正确C.甲、乙均正确D.甲、乙均错误
3、(4分) “弘扬柳乡工匠精神,共筑乡村振兴之梦”第三届柳编文化节暨首届“襄阳人游襄州”启动仪式在浩然广场举行。为了迎接此次盛会,某工艺品厂柳编车间组织名工人赶制一批柳编工艺品,为了解每名工人的日均生产能力,随机调查了某天每个工人的生产件数,获得数据如下表:
则这一天名工人生产件数的众数和中位数分别是( )
A.件、件B.件、件C.件、件D.件、件
4、(4分)以下列长度(单位:cm)为边长的三角形是直角三角形的是( )
A.3,4,5B.1,2,3C.5,7,9D.6,10,12
5、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.,,B.6,8,10C.7,24,25D.,3,5
6、(4分)若一元二次方程有实数根,则实数的取值范围是( )
A.B.C.D.
7、(4分)两次小测验中,李红分别得了64分(满分80分)和82分(满分100分),如果都按满分100分计算,李红两次成绩的平均分为( )
A.73B.81C.64.8D.80
8、(4分)如图,在正方形中,,是正方形的外角,是的角平分线上任意一点,则的面积等于( )
A.1B.C.2D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x > k1x+b的解集为________________
10、(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.
那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).
11、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为___.
12、(4分)当x______时,在实数范围内有意义.
13、(4分)计算:______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,相交于点,点在上,点在上,经过点.求证:四边形是平行四边形.
15、(8分)甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。根据这些材料,请你回答下列问题:
(1)在图①中,“7分”所在扇形的圆心角等于_______
(2)求图②中,“8分”的人数,并请你将该统计图补充完整。
(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?
(4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
16、(8分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
(1)求点A的坐标;
(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
17、(10分)邻居张老汉养了一群鸡,现在要建一长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长34米.请同学解决以下问题:
(1)若设鸡场的面积为y平方米,鸡场与墙平行的一边长为x米,请写出y与x之间的函数关系式,并写出x的取值范围;
(2)当鸡场的面积为160平方米时,鸡场的长与宽分别是多少米?
(3)鸡场的最大面积是多少?并求出此时鸡场的长与宽分别是多少米?
18、(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象(如图),图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是 件,日销售利润是 元;
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平行四边形的对角线相交于点,且,过点作,交于点.若的周长为,则______.
20、(4分)如图,AB∥CD∥EF,若AE=3CE,DF=2,则BD的长为________.
21、(4分)两个相似三角形的最短边长分别为5cm和3cm,它们的周长之差为12cm,那么较大三角形的周长为_____cm.
22、(4分)如图,在矩形ABCD中,AB=8,AD=3,点E是CD的中点,连接AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是______.
23、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)2019年5月区教育局在全区中小学开展了“情系新疆书香援疆”捐书活动.某学校学生社团对部分学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:
(1)统计表中的_____________,_____________,_____________,_____________;
(2)科普图书在扇形统计图中的圆心角是_____________°;
(3)若该校共捐书1500本,请估算“科普图书”和“小说”一共多少本.
25、(10分)为了解某校八年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次抽测的男生有 人,抽测成绩的众数是 ;
(2)请你将图2的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校400名八年级男生中估计有多少人体能达标?
26、(12分)如图,在三角形纸片中,的平分线交于点D,将沿折叠,使点C落在点A处.
(1)求证:.
(2)若,求的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.
【详解】
∵D,E分别为AB,AC的中点,
∴DE是三角形的中位线,
∴DE∥BC,
∴∠AED=∠C=70°,
故选A
此题考查平行线的性质,三角形中位线定理,难度不大
2、C
【解析】
试题解析:根据甲的作法作出图形,如下图所示.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵EF是AC的垂直平分线,
在和中,
∴≌,
又∵AE∥CF,
∴四边形AECF是平行四边形.
∴四边形AECF是菱形.
故甲的作法正确.
根据乙的作法作出图形,如下图所示.
∵AD∥BC,
∴∠1=∠2,∠6=∠7.
∵BF平分,AE平分
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∵AF∥BE,且
∴四边形ABEF是平行四边形.
∵
∴平行四边形ABEF是菱形.
故乙的作法正确.
故选C.
点睛:菱形的判定方法:有一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边相等的平行四边形是菱形.
3、C
【解析】
中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数据中出现次数最多的数据.
【详解】
数据3出现的次数最多,所以众数为3件;
因为共16人,
所以中位数是第8和第9人的平均数,即中位数==4件,
故选:C.
本题考查众数和中位数,解题关键在于熟练掌握计算法则.
4、A
【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
【详解】
A. 因为3+4=5,所以三条线段能组成直角三角形;
B. 因为1+2≠3,所以三条线段不能组成直角三角形;
C. 因为5+7≠9,所以三条线段不能组成直角三角形;
D. 因为6+10≠12,所以三条线段不能组成直角三角形;
故选:A.
此题考查勾股定理的逆定理,难度不大
5、A
【解析】
勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.
【详解】
∵()2+()2=7≠()2,∴,,不能作为直角三角形的三边长.故选A.
本题属于基础应用题,只需熟练掌握勾股定理的逆定理,即可完成.
6、D
【解析】
由一元二次方程根的判别式△≥0,结合一元二次方程的定义,即可求出k的取值范围.
【详解】
解:由题意得:,
,,
∴解得:.
故选:D.
本题考查了一元二次方程根的判别式,以及一元二次方程的定义,解题的关键是熟练掌握根的判别式求参数的取值范围.
7、B
【解析】
李红得分和竞赛试卷的满分100的比值一定,所以李红应的分和竞赛试卷的满分是100分成正比例,由此列式解答即可.
【详解】
解:设李红应得 x分,
则,
1x=6400,
x=1.
∴李红两次成绩的平均分为:,
故选B.
本题考查了比例在日常生活中的应用,要正确判断哪两种量成正比例.
8、A
【解析】
由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.
【详解】
过C点作CG⊥BD于G,
∵CF是∠DCE的平分线,
∴∠FCE=45°,
∵∠DBC=45°,
∴CF∥BD,
∴CG等于△PBD的高,
∵BD=2,
∴GC=BG==1,
△PBD的面积等于.
故答案为:1.
本题考查正方形的性质, 角平分线的性质,解决本题的关键是证明△BPD以BD为底时高与GC相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<-1;
【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.
【详解】
解:两个条直线的交点坐标为(-1,3),且当x<-1时,直线l2在直线l1的上方,故不等式k2x>k1x+b的解集为x<-1.
故本题答案为:x<-1.
本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
10、小于
【解析】
根据图形中的数据即可解答本题.
【详解】
解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,
∴凸面向上”的可能性 小于“凹面向上”的可能性.,
故答案为:小于.
本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
11、
【解析】
连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.
【详解】
解:连接OE,与DC交于点F,
∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
∵OD∥CE,OC∥DE,
∴四边形ODEC为平行四边形,
∵OD=OC,
∴四边形OCED为菱形,
∴DF=CF,OF=EF,DC⊥OE,
∵DE∥OA,且DE=OA,
∴四边形ADEO为平行四边形,
∵AD=,AB=2,
∴OE=,CD=2,
则S菱形OCED=OE•DC=××2=.
故答案为:.
本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.
12、x≥-1.
【解析】
根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.
【详解】
由题意得,2x+2≥0,
解得,x≥-1,
故答案为:x≥-1.
此题考查二次根式的有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
13、1
【解析】
根据分数指数幂的定义,转化为根式即可计算.
【详解】
==1.
故答案为1.
本题考查了分数指数幂,解题的关键是熟练掌握分数指数幂的定义,转化为根式进行计算,属于基础题.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
先利用平行四边形的性质得到,;再利用平行线性质证得,;利用三角形全等可得,即可求证.
【详解】
在中,,相交于点,
,.
,.
(AAS).
.
四边形是平行四边形.
本题考查了平行四边形的证明,难度适中,熟练掌握平行四边形的性质是解题的关键.
15、(1)144°;(2)3人,补图见解析;(3)8.3分,7分,乙校;(4)甲校.
【解析】
分析:(1)利用360°减去其它各组对应的圆心角即可求解;
(2)首先求得乙校参赛的人数,即可求得成绩是8分的人数,从而将条形统计图补充完整;
(3)首先求得得分是9分的人数,然后根据平均数公式和中位数的定义求解;
(4)只要比较每个学校前8名的成绩即可.
详解:(1)“7分”所在扇形的圆心角等于360°-90°-72°-54°=144°;
(2)乙校参赛的总人数是:4÷=20(人),
则成绩是8分的人数是:20-8-4-5=3(人).
;
(3)甲校中得分是9分的人数是:20-11-8=1(人).
则甲校的平均分是:=8.3(分),
甲校的中位数是:7分;
两校的平均数相同,但乙校的中位数大于甲校的中位数,说明乙校的成绩高于甲校的成绩.
(4)甲得分是10分的正好有8人,而乙班得分是10分的有5人,不足8人,则应选择甲校.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
16、(1)A(4,3);(2)28.
【解析】
(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.
【详解】
解:(1)由题意得: ,解得,
∴点A的坐标为(4,3).
(2)过点A作x轴的垂线,垂足为D,
在Rt△OAD中,由勾股定理得,
∴.
∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,
∴,解得a=8.
∴.
17、(1)y= -x2+18x(2
(1)用含x的式子表示鸡场与墙垂直的一边长,根据矩形面积公式即可写出函数关系式;
(2)根据(1)所得关系式,将y=2代入即可求解;
(3)求出函数的最大值,使得面积取最大值即可求解.
【详解】
解:(1)根据题意,鸡场与墙平行的一边长为x米,可得鸡场与墙垂直的一边长为米,即(18-)米,
可得y=x(18-)= -x2+18x(2
解得x1=1,x2=20(不合题意,舍去),所以x=1.
当x=1时,18-=2.
所以,鸡场的长与宽分别为1米、2米;
(3)对于y== -x2+18x,a= -<0,所以函数有最大值, 当x= -=18时,函数有最大值,最大值y=12
当x=18时,18-=3.
所以鸡场的最大面积为12平方米,此时鸡场的长与宽分别为18米、3米.
本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.
18、 (1)330;660 (2)答案见解析(3) 日销售利润不低于640元的天数共有11天,试销售期间,日销售最大利润是720元.
【解析】
(1)340﹣(24﹣22)×5=330(件),
330×(8﹣6)=660(元).
(2)设线段OD所表示的y与x之间的函数关系式为y=kx,
将(17,340)代入y=kx中,
340=17k,解得:k=20,
∴线段OD所表示的y与x之间的函数关系式为y=20x.
根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+1.
联立两线段所表示的函数关系式成方程组,
得,解得,
∴交点D的坐标为(18,360),
∴y与x之间的函数关系式为y=.
(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,
解得:x≥16;
当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+1)≥640,
解得:x≤2.
∴16≤x≤2.
2﹣16+1=11(天),
∴日销售利润不低于640元的天数共有11天.
∵点D的坐标为(18,360),
∴日最大销售量为360件,
360×2=720(元),
∴试销售期间,日销售最大利润是720元.
考点:一次函数的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6.
【解析】
根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,即可解答.
【详解】
∵ABCD是平行四边形,
∴OA=OC,AD=BC,AB=CD
∵OM⊥AC,
∴AM=MC.
∴△CDM的周长=AD+CD=9,
BC=9-3=6
故答案为6.
此题考查平行四边形的性质,解题关键在于得出MC=MA
20、1
【解析】
根据平行线分线段成比例定理列出比例式,代入计算得到答案.
【详解】
解:∵AB∥CD∥EF,
,.
解得,BD=1,
故答案为:1.
本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
21、1
【解析】
根据已知条件即可求出两个三角形的相似比为5:3,然后根据相似三角形的性质,可设大三角形的周长为5x,则小三角形的周长为3x,根据周长之差为12cm,列方程并解方程即可.
【详解】
解:∵两个相似三角形的最短边分别是5cm和3cm,
∴两个三角形的相似比为5:3,
设大三角形的周长为5x,则小三角形的周长为3x,
由题意得,5x﹣3x=12,
解得,x=6,
则5x=1,
故答案为:1.
此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.
22、
【解析】
由折叠可得全等形,由中点、勾股定理可求出AE的长,得到三角形EFC是等腰三角形,利用三线合一和勾股定理使问题得以解决.
【详解】
解:过点E作EG⊥FC垂足为G,
∵点E是CD的中点,矩形ABCD中,AB=8,AD=3,
∴DE=EC=4,
在Rt△ADE中,AE==5,
由折叠得:∠DEA=∠AEF,DE=EF=DC=4,
又∵EG⊥FC
∴∠FEG=∠GEC,FG=GC,
∴∠AEG=×180°=90°,
∴△ADE∽△EGC,
∴即:,
解得:CG=,
∴FC=,
故答案为:.
考查矩形的性质、折叠轴对称的性质、相似三角形的性质、等腰三角形的性质等知识,综合性较强,掌握图形的性质和恰当的作辅助线方法,是解决问题技巧所在.
23、
【解析】
根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.
【详解】
∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,
∴BO=OD=3,AO=OC=4,
∴AB==5,
故菱形的周长为1,
故答案为:1.
本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1),,,;(2);(3)
【解析】
(1)根据频率=频数÷总数分别求解可得;
(2)圆心角=频数×360°可得;
(3)用总人数乘以样本中科普图书和小说的频率之和可得;
【详解】
(1)先求出总数=500,a==0.35,b=500×0.3=150,c==0.22,d==0.13
所以,,,;
(2)360×0.3=
(3)(本)
本题考查了列表法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.
25、(1)50,5次;(2)见解析;(3)该校400名八年级男生中有288人体能达标
【解析】
分析:(1)根据4次的有10人,占20%,据此即可求得总人数,然后求得5次的人数,根据众数的定义即可求得众数;
(2)根据(1)的结果即可作出图形;
(3)利用400乘以对应的比例即可求解;
详解:(1)抽测的总人数是:10÷20%=50(人),
次数是5次的人数是:50-4-10-14-6=16(人),
则众数是:5次;
(2)补图如下.
(3)该校350名八年级男生中估计能达标的人数是:400×=288(人);
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
26、(1)证明见解析;(2)
【解析】
(1)由角平分线的定义可得,由折叠图形的性质可得,DE垂直平分AC,可得,即可求证;
(2)由(1)可得,在三角形ABC中,根据内角和等于180度即可求解.
【详解】
解:(1)平分,
.
∵将沿DE对折后,点C落在点A处,
垂直平分,
,
.
(2)由(1)可得,,
∴
.
本题考查折叠图形的性质、角平分线的定义、三角形内角和定理和垂直平分线的性质,解题的关键是灵活运用各种知识证明和求解,是个较简单的几何题.
题号
一
二
三
四
五
总分
得分
批阅人
甲校成绩统计表
成绩
7分
8分
9分
10分
人数
11
0
8
2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】: 这是一份2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市昌平二中学南校区数学九上开学达标检测模拟试题【含答案】: 这是一份2024年北京市昌平二中学南校区数学九上开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。