终身会员
搜索
    上传资料 赚现金

    高考数学二轮复习讲义(新高考版)专题2培优点11向量极化恒等式(学生版+解析)

    立即下载
    加入资料篮
    高考数学二轮复习讲义(新高考版)专题2培优点11向量极化恒等式(学生版+解析)第1页
    高考数学二轮复习讲义(新高考版)专题2培优点11向量极化恒等式(学生版+解析)第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学二轮复习讲义(新高考版)专题2培优点11向量极化恒等式(学生版+解析)

    展开

    这是一份高考数学二轮复习讲义(新高考版)专题2培优点11向量极化恒等式(学生版+解析),共5页。学案主要包含了要点总结,方法总结,拓展训练等内容,欢迎下载使用。
    极化恒等式:a·b=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))2-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a-b,2)))2.
    变式:a·b=eq \f(a+b2,4)-eq \f(a-b2,4),a·b=eq \f(|a+b|2,4)-eq \f(|a-b|2,4).
    如图,在△ABC中,设M为BC的中点,则eq \(AB,\s\up6(→))·eq \(AC,\s\up6(→))=eq \(AM,\s\up6(→))2-eq \(MB,\s\up6(→))2.

    【典例】 (1)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点. eq \(BA,\s\up6(→))·eq \(CA,\s\up6(→))=4, eq \(BF,\s\up6(→))·eq \(CF,\s\up6(→))=-1,则eq \(BE,\s\up6(→))·eq \(CE,\s\up6(→))的值为________.
    (2)如图所示,正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN的长度最大时, eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))的取值范围是________.
    【方法总结】
    利用向量的极化恒等式可以快速对数量积进行转化,体现了向量的几何属性,特别适合于以三角形为载体,含有线段中点的向量问题.
    【拓展训练】
    1.已知在△ABC中,P0是边AB上一定点,满足P0B=eq \f(1,4)AB,且对于边AB上任一点P,恒有eq \(PB,\s\up6(→))·eq \(PC,\s\up6(→))≥eq \(P0B,\s\up6(→))·eq \(P0C,\s\up6(→)),则( )
    A.∠ABC=90° B.∠BAC=90°
    C.AB=AC D.AC=BC
    2.如图所示,正方形ABCD的边长为1,A,D分别在x轴,y轴的正半轴(含原点)上滑动,则eq \(OC,\s\up6(→))·eq \(OB,\s\up6(→))的最大值是________.
    培优点11 向量极化恒等式
    【要点总结】
    极化恒等式:a·b=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))2-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a-b,2)))2.
    变式:a·b=eq \f(a+b2,4)-eq \f(a-b2,4),a·b=eq \f(|a+b|2,4)-eq \f(|a-b|2,4).
    如图,在△ABC中,设M为BC的中点,则eq \(AB,\s\up6(→))·eq \(AC,\s\up6(→))=eq \(AM,\s\up6(→))2-eq \(MB,\s\up6(→))2.

    【典例】 (1)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点. eq \(BA,\s\up6(→))·eq \(CA,\s\up6(→))=4, eq \(BF,\s\up6(→))·eq \(CF,\s\up6(→))=-1,则eq \(BE,\s\up6(→))·eq \(CE,\s\up6(→))的值为________.
    【答案】 eq \f(7,8)
    【解析】 设BD=DC=m,AE=EF=FD=n,则AD=3n.
    根据向量的极化恒等式,有eq \(AB,\s\up6(→))·eq \(AC,\s\up6(→))=eq \(AD,\s\up6(→))2-eq \(DB,\s\up6(→))2=9n2-m2=4, eq \(FB,\s\up6(→))·eq \(FC,\s\up6(→))=eq \(FD,\s\up6(→))2-eq \(DB,\s\up6(→))2=n2-m2=-1.
    联立解得n2=eq \f(5,8),m2=eq \f(13,8).
    因此eq \(EB,\s\up6(→))·eq \(EC,\s\up6(→))=eq \(ED,\s\up6(→))2-eq \(DB,\s\up6(→))2=4n2-m2=eq \f(7,8).
    即eq \(BE,\s\up6(→))·eq \(CE,\s\up6(→))=eq \f(7,8).
    (2)如图所示,正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN的长度最大时, eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))的取值范围是________.
    【答案】 [0,2]
    【解析】 由正方体的棱长为2,得内切球的半径为1,正方体的体对角线长为2eq \r(3).当弦MN的长度最大时,MN为球的直径.设内切球的球心为O,则eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))=eq \(PO,\s\up6(→))2-eq \(ON,\s\up6(→))2=eq \(PO,\s\up6(→))2-1.由于P为正方体表面上的动点,故OP∈[1,eq \r(3)],所以eq \(PM,\s\up6(→))·eq \(PN,\s\up6(→))∈[0,2].
    【方法总结】
    利用向量的极化恒等式可以快速对数量积进行转化,体现了向量的几何属性,特别适合于以三角形为载体,含有线段中点的向量问题.
    【拓展训练】
    1.已知在△ABC中,P0是边AB上一定点,满足P0B=eq \f(1,4)AB,且对于边AB上任一点P,恒有eq \(PB,\s\up6(→))·eq \(PC,\s\up6(→))≥eq \(P0B,\s\up6(→))·eq \(P0C,\s\up6(→)),则( )
    A.∠ABC=90° B.∠BAC=90°
    C.AB=AC D.AC=BC
    【答案】 D
    【解析】 如图所示,取AB的中点E,因为P0B=eq \f(1,4)AB,所以P0为EB的中点,取BC的中点D,则DP0为△CEB的中位线,DP0∥CE.
    根据向量的极化恒等式,
    有eq \(PB,\s\up6(→))·eq \(PC,\s\up6(→))=eq \(PD,\s\up6(→))2-eq \(DB,\s\up6(→))2,eq \(P0B,\s\up6(→))·eq \(P0C,\s\up6(→))=eq \(P0D,\s\up6(→))2-eq \(DB,\s\up6(→))2.
    又eq \(PB,\s\up6(→))·eq \(PC,\s\up6(→))≥eq \(P0B,\s\up6(→))·eq \(P0C,\s\up6(→)),则| eq \(PD,\s\up6(→))|≥|eq \(P0D,\s\up6(→))|恒成立,
    必有DP0⊥AB.因此CE⊥AB,又E为AB的中点,所以AC=BC.
    2.如图所示,正方形ABCD的边长为1,A,D分别在x轴,y轴的正半轴(含原点)上滑动,则eq \(OC,\s\up6(→))·eq \(OB,\s\up6(→))的最大值是________.
    【答案】 2
    【解析】 如图,取BC的中点M,AD的中点N,连接MN,ON,
    则eq \(OC,\s\up6(→))·eq \(OB,\s\up6(→))=eq \(OM,\s\up6(→))2-eq \f(1,4).
    因为OM≤ON+NM=eq \f(1,2)AD+AB=eq \f(3,2),
    当且仅当O,N,M三点共线时取等号.
    所以eq \(OC,\s\up6(→))·eq \(OB,\s\up6(→))的最大值为2.

    相关学案

    高考数学二轮复习讲义(新高考版)专题2培优点10平面向量“奔驰定理”(学生版+解析):

    这是一份高考数学二轮复习讲义(新高考版)专题2培优点10平面向量“奔驰定理”(学生版+解析),共7页。学案主要包含了方法总结,拓展训练等内容,欢迎下载使用。

    高考数学二轮复习讲义(新高考版)专题2培优点9平面向量数量积的最值问题(学生版+解析):

    这是一份高考数学二轮复习讲义(新高考版)专题2培优点9平面向量数量积的最值问题(学生版+解析),共8页。学案主要包含了方法总结,拓展训练等内容,欢迎下载使用。

    高考数学二轮复习讲义(新高考版)专题2培优点8向量共线定理的应用(学生版+解析):

    这是一份高考数学二轮复习讲义(新高考版)专题2培优点8向量共线定理的应用(学生版+解析),共1页。学案主要包含了方法总结,拓展训练等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map