终身会员
搜索
    上传资料 赚现金

    2024年北京市月坛中学数学九上开学复习检测试题【含答案】

    立即下载
    加入资料篮
    2024年北京市月坛中学数学九上开学复习检测试题【含答案】第1页
    2024年北京市月坛中学数学九上开学复习检测试题【含答案】第2页
    2024年北京市月坛中学数学九上开学复习检测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年北京市月坛中学数学九上开学复习检测试题【含答案】

    展开

    这是一份2024年北京市月坛中学数学九上开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)三角形的三边长分别为6,8,10,它的最短边上的高为( )
    A.6 B.4.5 C.2.4 D.8
    2、(4分)如果把分式中的x、y的值都扩大为原来的3倍,那么分式的值( )
    A.不变B.扩大为原来的3倍
    C.扩大为原来的6倍D.扩大为原来的9倍
    3、(4分)已知:如图,在矩形ABCD中,E ,F ,G ,H分别为边AB, BC ,CD, DA的中点.若AB=2,AD=4,则图中阴影部分的面积为 ( )
    A.5B.4.5C.4D.3.5
    4、(4分)若a>b,则下列式子正确的是( )
    A.a+2<b+2B.﹣2a>﹣2bC.a﹣2>b﹣2D.
    5、(4分)下列关于矩形的说法中正确的是( )
    A.对角线相等的四边形是矩形
    B.矩形的对角线相等且互相平分
    C.对角线互相平分的四边形是矩形
    D.矩形的对角线互相垂直且平分
    6、(4分)化简的结果是( )
    A.2B.-2C.D.4
    7、(4分)下列多项式中,能用完全平方公式分解因式的是( )
    A.B.C.D.
    8、(4分)如图,矩形ABCD中,O是对角线AC的中点,OE⊥AC,交AD于点E,连接CE.若AB=2,BC=4,则CE的长为( )
    A.2.5B.2.8C.3D.3.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若一组数据,,,,的众数是,则这组数据的方差是__________.
    10、(4分)如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b﹣1>0的解集是_____.
    11、(4分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.
    12、(4分)化简______.
    13、(4分)如图,在正方形ABCD中,H为AD上一点,∠ABH=∠DBH,BH交AC于点G.若HD=2,则线段AD的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形ABCD中,E是AD的中点,F是 AB上一点,且AF=AB.
    求证:CE⊥EF.
    15、(8分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
    (1)求证:AE=DF;
    (2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;
    (3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.
    16、(8分)如图,的对角线相交于点,直线EF过点O分别交BC,AD于点E、F,G、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.
    17、(10分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
    (1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
    (2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
    18、(10分)化简代数式:,并求当 x=2012 时,代数式的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.
    20、(4分)计算:(2﹣1)(1+2)=_____.
    21、(4分)李华在淘宝网上开了一家羽毛球拍专卖店,平均每大可销售个,每个盈利元,若每个降价元,则每天可多销售个.如果每天要盈利元,每个应降价______元(要求每个降价幅度不超过元)
    22、(4分)在平面直角坐标系中,已知点在第二象限,那么点在第_________象限.
    23、(4分)对于平面直角坐标系中的点,给出如下定义:记点到轴的距离为,到轴的距离为,若,则称为点的最大距离;若,则称为点的最大距离.例如:点到到轴的距离为4,到轴的距离为3,因为,所以点的最大距离为4.若点在直线上,且点的最大距离为5,则点的坐标是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知,一次函数的图象与x轴、y轴分别交于点A和B.
    求A,B两点的坐标,并在如图的坐标系中画出函数的图象;
    若点C在第一象限,点D在x轴的正半轴上,且四边形ABCD是菱形,直接写出C,D两点的坐标.
    25、(10分)如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.
    26、(12分)如图,四边形是正方形,点是边上的任意一点,于点,,且交于点,求证:
    (1)
    (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质
    由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.
    由题意知,,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为1.故选D.
    2、A
    【解析】
    根据分式的基本性质即可求出答案
    【详解】
    解:∵ ,
    ∴分式的值不变.故选:A.
    本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
    3、C
    【解析】
    连接AC,BD,FH,EG,
    ∵四边形ABCD是矩形,
    ∴AC=BD,
    ∵E,F,G,H分别为边AB,BC,CD,DA的中点,
    ∴HG=AC,EF∥AC,EF=AC,EH=BD,GF=BD,
    ∴EH=HG =EF=GF,
    ∴平行四边形EFGH是菱形,
    ∴FH⊥EG,
    ∴阴影部分EFGH的面积是×HF×EG=×2×4=4,
    故选C.
    4、C
    【解析】
    依据不等式的基本性质进行判断,即可得出结论.
    【详解】
    解:若,则,故选项错误;
    若,则,故选项错误;
    若,则,故选项正确;
    若,则,故选项错误;
    故选:C.
    本题主要考查了不等式的基本性质,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.
    5、B
    【解析】
    试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;
    B.矩形的对角线相等且互相平分,故本选项正确;
    C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;
    D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;
    故选B.
    考点:矩形的判定与性质.
    6、A
    【解析】
    直接利用二次根式的性质化简得出答案.
    【详解】
    解:,
    故选:A.
    此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
    7、C
    【解析】
    对下列各式进行因式分解,然后判断利用完全平方公式分解即可.
    【详解】
    解:A、,不能用完全平方公式分解因式,故A选项错误;
    B、,不能用完全平方公式分解因式,故B选项错误;
    C、,能用完全平方公式分解,故C选项正确;
    D、不能用完全平方公式分解因式,故D选项错误;
    故选:C.
    本题考查了因式分解,熟练掌握因式分解的公式法是解本题的关键.
    8、A
    【解析】
    利用线段的垂直平分线的性质,得到与的关系,再由勾股定理计算出的长即可.
    【详解】
    解:四边形是矩形,
    ,,,


    设,则,
    在中,根据勾股定理可得,
    即,
    解得,
    故选:.
    本题考查了利用线段的垂直平分线的性质、矩形的性质及勾股定理综合解答问题的能力,在解上面关于的方程时有时出现错误,而误选其它选项.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、13.1
    【解析】
    首先根据众数的定义求出的值,进而利用方差公式得出答案.
    【详解】
    解:数据0,,8,1,的众数是,



    故答案为:13.1.
    此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.
    10、x<1
    【解析】
    由一次函数y=kx+b的图象过点(1,1),且y随x的增大而减小,从而得出不等式kx+b﹣1>1的解集.
    【详解】
    由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,
    ∵一次函数y=kx+b的图象与y轴交于点(1,1),
    ∴当x<1时,有kx+b﹣1>1.
    故答案为x<1
    本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.
    11、1
    【解析】
    解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC
    所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1
    故答案为:1.
    本题考查三角形的中位线定理.
    12、.
    【解析】
    约去分子与分母的公因式即可.
    【详解】
    .
    故答案为:.
    本题主要考查了分式的约分,主要是约去分式的分子与分母的公因式.
    13、
    【解析】
    作HE⊥BD交BD于点E,在等腰直角三角形DEH中求出HE的长,由角平分线的性质可得HE=AH,即可求出AD的长.
    【详解】
    作HE⊥BD交BD于点E,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°, ∠ADB=45°,
    ∴△DEH是等腰直角三角形,
    ∴HE=DE,
    ∵HE2+DE2=DH2,
    ∴HE=,
    ∵∠ABH=∠DBH,∠BAD=90°, ∠BEH=90°,
    ∴HE=AH=,
    ∴.AD=.
    故答案为.
    本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析
    【解析】
    利用正方形的性质得出,,设出边长为,进一步利用勾股定理求得、、的长,再利用勾股定理逆定理判定即可.
    【详解】
    连接,
    ∵为正方形
    ∴,.

    ∵是的中点,且
    ∴,
    ∴.
    在中,由勾股定理可得
    同理可得:


    ∴为直角三角形

    ∴.
    此题考查勾股定理的逆定理,正方形的性质和勾股定理,解题关键在于设出边长为.
    15、(1)证明见解析;(2)当t=10时,四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由见解析.
    【解析】
    (1)由已知条件可得RT△CDF中∠C=30°,即可知DF= CD=AE=2t;
    (2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;
    (3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.
    【详解】
    (1)∵Rt△ABC中,∠B=90°,∠A=60°,
    ∴∠C=90°−∠A=30°.
    又∵在Rt△CDF中,∠C=30°,CD=4t
    ∴DF=CD=2t,
    ∴DF=AE;
    (2)∵DF∥AB,DF=AE,
    ∴四边形AEFD是平行四边形,
    当AD=AE时,四边形AEFD是菱形,
    即60−4t=2t,解得:t=10,
    即当t=10时,四边形AEFD是菱形;
    (3)四边形BEDF不能为正方形,理由如下:
    当∠EDF=90°时,DE∥BC.
    ∴∠ADE=∠C=30°
    ∴AD=2AE
    ∵CD=4t,
    ∴DF=2t=AE,
    ∴AD=4t,
    ∴4t+4t=60,
    ∴t= 时,∠EDF=90°
    但BF≠DF,
    ∴四边形BEDF不可能为正方形。
    此题考查四边形综合题,解题关键在于得到DF= CD=AE=2t
    16、见解析.
    【解析】
    通过证明△EOB≌△FOD得出EO=FO,结合G、H分别为OB、OD的中点,可利用对角线互相平分的四边形是平行四边形进行证明.
    【详解】
    证明:∵四边形ABCD为平行四边形,
    ∴BO=DO,AD=BC且AD∥BC.
    ∴∠ADO=∠CBO.
    又∵∠EOB=∠FOD,
    ∴△EOB≌△FOD(ASA).
    ∴EO=FO.
    又∵G、H分别为OB、OD的中点,
    ∴GO=HO.
    ∴四边形GEHF为平行四边形.
    本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
    17、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.
    【解析】
    (1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;
    (2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
    【详解】
    (1)设y与x之间的函数关系式为y=kx+b,
    将(22.6,34.8)、(24,32)代入y=kx+b,
    ,解得:,
    ∴y与x之间的函数关系式为y=﹣2x+1.
    当x=23.5时,y=﹣2x+1=2.
    答:当天该水果的销售量为2千克.
    (2)根据题意得:(x﹣20)(﹣2x+1)=150,
    解得:x1=35,x2=3.
    ∵20≤x≤32,
    ∴x=3.
    答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.
    本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
    18、1
    【解析】
    原式第一项被除数分子利用完全平方公式分解因式,分母利用平方差公式分解因式,除法分子提取x分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后合并得到最简结果,将x的值代入计算,即可求出值.
    【详解】
    原式=
    当x=2012时,原式=1.
    本题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1800
    【解析】
    多边形的外角和等于360°,则正多边形的边数是360°÷30°=12,所以正多边形的内角和为.
    20、7
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    原式=(2)2-1
    =8-1
    =7,
    故答案为:7.
    本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
    21、1
    【解析】
    首先设每个羽毛球拍降价x元,那么就多卖出5x个,根据每天要盈利1700元,可列方程求解.
    【详解】
    解:设每个羽毛球拍降价x元,
    由题意得:(40-x)(20+5x)=1700,
    即x2-31x+180=0,
    解之得:x=1或x=20,
    因为 每个降价幅度不超过15元,
    所以 x=1符合题意,
    故答案是:1.
    本题考查了一元二次方程的应用,关键是看到降价和销售量的关系,然后根据利润可列方程求解.
    22、三
    【解析】
    根据在第二象限中,横坐标小于0,纵坐标大于0,所以-n<0,m<0,再根据每个象限的特点,得出点B在第三象限,即可解答.
    【详解】
    解:∵点A(m,n)在第二象限,
    ∴m<0,n>0,
    ∴-n<0,m<0,
    ∵点B(-n,m)在第三象限,
    故答案为三.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    23、或
    【解析】
    根据点C的“最大距离”为5,可得x=±5或y=±5,代入可得结果.
    【详解】
    设点C的坐标(x,y),
    ∵点C的“最大距离”为5,
    ∴x=±5或y=±5,
    当x=5时,y=-7(不合题意,舍去),
    当x=-5时,y=3,
    当y=5时,x=-7(不合题意,舍去),
    当y=-5时,x=3,
    ∴点C(-5,3)或(3,-5).
    故答案为:(-5,3)或(3,-5).
    本题考查一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决数学问题.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) A,B,画图见解析;(2),.
    【解析】
    (1)先求出A,B两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D的坐标.
    【详解】
    解:将代入,可得;
    将,代入,可得;
    点A的坐标为,点B的坐标为,
    如图所示,直线AB即为所求;
    由点A的坐标为,点B的坐标为,可得
    ,,
    中,,
    四边形ABCD是菱形,


    ,.
    本题考核知识点:一次函数与菱形. 解题关键点:熟记菱形的判定与性质.
    25、证明见解析
    【解析】
    可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC.
    ∵AE=AD,FC=BC,
    ∴AE∥FC,AE=FC.
    ∴四边形AECF是平行四边形.
    ∴GF∥EH.
    同理可证:ED∥BF且ED=BF.
    ∴四边形BFDE是平行四边形.
    ∴GE∥FH.
    ∴四边形EGFH是平行四边形.
    考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
    26、(1)见详解;(2)见详解.
    【解析】
    (1)证明△AED≌△BFA即可说明DE=AF;
    (2)由△AED≌△BFA可得AE=BF,又AFAE=EF,所以结论可证.
    【详解】
    证明:(1)∵四边形ABCD是正方形,
    ∴AD=AB,∠DAE+∠BAF=90°.
    ∵∠ABF+∠BAF=90°,
    ∴∠DAE=∠ABF.
    又∠AED=∠BFA.
    ∴△AED≌△BFA(AAS).
    ∴DE=AF;
    (2)∵△AED≌△BFA,
    ∴AE=BF.
    ∵AF-AE=EF,
    ∴AF-BF=EF.
    本题主要考查了正方形的性质、全等三角形的判定和性质,解决此类问题一般是通过三角形的全等转化线段.
    题号





    总分
    得分
    销售量y(千克)

    34.8
    32
    29.6
    28

    售价x(元/千克)

    22.6
    24
    25.2
    26

    相关试卷

    2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】:

    这是一份2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】:

    这是一份2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map