年终活动
搜索
    上传资料 赚现金

    2024年甘肃省靖远县靖安中学九上数学开学综合测试模拟试题【含答案】

    2024年甘肃省靖远县靖安中学九上数学开学综合测试模拟试题【含答案】第1页
    2024年甘肃省靖远县靖安中学九上数学开学综合测试模拟试题【含答案】第2页
    2024年甘肃省靖远县靖安中学九上数学开学综合测试模拟试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年甘肃省靖远县靖安中学九上数学开学综合测试模拟试题【含答案】

    展开

    这是一份2024年甘肃省靖远县靖安中学九上数学开学综合测试模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作垂直于x轴的直线l1和l2,探究直线 l1、l2与函数y=的图像(双曲线)之间的关系,下列结论错误的是( )
    A.两条直线中总有一条与双曲线相交
    B.当 m=1 时,两条直线与双曲线的交点到原点的距离相等
    C.当 m<0 时,两条直线与双曲线的交点都在 y 轴左侧
    D.当 m>0 时,两条直线与双曲线的交点都在 y 轴右侧
    2、(4分)数据:2,5,4,5,3,4,4的众数与中位数分别是( )
    A.4,3B.4,4C.3,4D.4,5
    3、(4分)下面各式计算正确的是( )
    A.(a5)2=a7B.a8÷a2=a6
    C.3a3•2a3=6a9D.(a+b)2=a2+b2
    4、(4分)下列命题中,真命题是( )
    A.两条对角线垂直的四边形是菱形
    B.对角线垂直且相等的四边形是正方形
    C.两条对角线相等的四边形是矩形
    D.两条对角线相等的平行四边形是矩形
    5、(4分)已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为( )
    A.(2,5)B.(5,2)C.(2,5)或(-2,5)D.(5,2)或(-5,2)
    6、(4分)在函数y=中,自变量x的取值范围是( )
    A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠1
    7、(4分)已知,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.当∠APB=45°时,PD的长是( );
    A.B.C.D.5
    8、(4分)已知实数a、b,若a>b,则下列结论正确的是( )
    A.a+3<b+3B.a-4<b-4C.2a>2bD.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)用4个全等的正八边形拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则的值为__________.
    10、(4分)如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,则平行四边形ABCD的周长___________.
    11、(4分)同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,则它们另一个交点为坐标为_____.
    12、(4分)如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.
    13、(4分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在直角坐标系中,直线l1经过(2,3)和(-1,-3):直线l2经过原点O,且与直线l1交于点P(-2,a).
    (1)求a的值;
    (2)(-2,a)可看成怎样的二元一次方程组的解?
    15、(8分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
    (发现证明)小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
    (类比引申)如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD.
    (探究应用)如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)
    16、(8分)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.
    17、(10分)已知在边长为4的菱形ABCD中,∠EBF=∠A=60°,
    (1)如图①,当点E、F分别在线段AD、DC上,
    ①判断△EBF的形状,并说明理由;
    ②若四边形ABFD的面积为7,求DE的长;
    (2)如图②,当点E、F分别在线段AD、DC的延长线上,BE与DC交于点O,设△BOF的面积为S1,△EOD的面积为S2,则S1-S2的值是否为定值,如果是,请求出定值:如果不是,请说明理由.
    18、(10分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C 重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.
    (1)当点E与点D重合时,△BDF的面积为 ;当点E为CD的中点时,△BDF的面积为 .
    (2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;
    (3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知,,则__________.
    20、(4分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)
    21、(4分)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为________.
    22、(4分)已知点(m-1,y1),(m-3,y2)是反比例函数y=(m”“=”或“b+3
    B 错误,a-4>b-4
    C 正确.
    D 错误,
    故选C.
    本题主要考查不等式的性质,属于基本知识,应当熟练掌握.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据正六边形的一个内角为120°,可求出正六边形密铺时中间的正多边形的内角,继而可求出n的值.
    【详解】
    解:两个正六边形拼接,一个公共点处组成的角度为240°,
    故如果要密铺,则中间需要一个内角为120°的正多边形,
    而正六边形的内角为120°,所以中间的多边形为正六边形,
    故n=1.
    故答案为:1.
    此题考查了平面密铺的知识,解答本题的关键是求出在密铺条件下中间需要的正多边形的一个内角的度数,进而得到n的值,难度不大.
    10、39
    【解析】
    根据角平分线和平行得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE,根据勾股定理求得BC=13cm,根据等腰三角形性质得到AB,CD,从而求得周长.
    【详解】
    在中,
    ∵,AB=CD

    ∵BE、CE分别平分∠ABC、∠BCD

    ∴ ,



    ∵BE平分

    ∴ ,
    同理可得 ,

    ∴的周长为:
    故答案为: .
    本题考查了等腰三角形和直角三角形的性质,解题的关键在于利用等腰三角形和直角三角形的性质求得平行四边形中一组对边的长度.
    11、
    【解析】
    反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
    【详解】
    解:∵同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,
    ∴另一交点的坐标是(-3,1).
    故答案是:(-3,1).
    本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.
    12、1
    【解析】
    连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.
    【详解】
    如图,连接BE、DF交于点O.
    ∵四边形ABCD是正方形,
    ∴,.
    ∵是等腰直角三角形,
    ∴,,
    ∴.
    在和△中,
    ∵,,,
    ∴,
    ∴.


    ∴,
    ∴,,,,
    ∴.
    故答案为1.
    本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.
    13、
    【解析】
    如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.
    ∵四边形OABC是菱形,
    ∴AC⊥OB,GC=AG,OG=BG=2,A. C关于直线OB对称,
    ∴PC+PD=PA+PD=DA,
    ∴此时PC+PD最短,
    在RT△AOG中,AG=,
    ∴AC=2,
    ∵OA⋅BK=⋅AC⋅OB,
    ∴BK=4,AK==3,
    ∴点B坐标(8,4),
    ∴直线OB解析式为y=x,直线AD解析式为y=−x+1,
    由,解得,
    ∴点P坐标(,).
    故答案为:(,).
    点睛:本题考查了菱形的性质、轴对称-最短路径问题、坐标与图象的性质等知识,解题的关键是正确找到点P的位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.
    三、解答题(本大题共5个小题,共48分)
    14、(1)a=-5;(2)可以看作二元一次方程组的解.
    【解析】
    (1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;
    (2)利用待定系数法确定l2得解析式,由于P(-2,a)是l1与l2的交点,所以点(-2,-5)可以看作是解二元一次方程组所得.
    【详解】
    .解:(1)设直线 的解析式为y=kx+b,将(2,3),(-1,-3)代入,
    ,解得,所以y=2x-1.
    将x=-2代入,得到a=-5;
    (2)由(1)知点(-2,-5)是直线与直线 交点,则:y=2.5x;
    因此(-2,a)可以看作二元一次方程组的解.
    故答案为:(1)a=-5;(2)可以看作二元一次方程组的解.
    本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.
    15、【发现证明】证明见解析;【类比引申】∠BAD=2∠EAF;【探究应用】1.2米.
    【解析】
    【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.
    【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;
    【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可得出EF=BE+FD.
    解:如图(1),
    ∵△ADG≌△ABE,
    ∴AG=AE,∠DAG=∠BAE,DG=BE,
    又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
    ∴∠GAF=∠FAE,
    在△GAF和△FAE中,
    AG=AE,∠GAF=∠FAE,AF=AF,
    ∴△AFG≌△AFE(SAS).
    ∴GF=EF.
    又∵DG=BE,
    ∴GF=BE+DF,
    ∴BE+DF=EF.
    【类比引申】∠BAD=2∠EAF.
    理由如下:如图(2),延长CB至M,使BM=DF,连接AM,
    ∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
    ∴∠D=∠ABM,
    在△ABM和△ADF中,
    AB=AD,∠ABM=∠D,BM=DF,
    ∴△ABM≌△ADF(SAS),
    ∴AF=AM,∠DAF=∠BAM,
    ∵∠BAD=2∠EAF,
    ∴∠DAF+∠BAE=∠EAF,
    ∴∠EAB+∠BAM=∠EAM=∠EAF,
    在△FAE和△MAE中,
    AE=AE,∠FAE=∠MAE,AF=AM,
    ∴△FAE≌△MAE(SAS),
    ∴EF=EM=BE+BM=BE+DF,
    即EF=BE+DF.
    故答案是:∠BAD=2∠EAF.
    【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.
    ∵∠BAD=150°,∠DAE=90°,
    ∴∠BAE=60°.
    又∵∠B=60°,
    ∴△ABE是等边三角形,
    ∴BE=AB=80米.
    根据旋转的性质得到:∠ADG=∠B=60°,
    又∵∠ADF=120°,
    ∴∠GDF=180°,即点G在CD的延长线上.
    易得,△ADG≌△ABE,
    ∴AG=AE,∠DAG=∠BAE,DG=BE,
    又∵∠EAG=∠BAD=150°,
    ∴∠GAF=∠FAE,
    在△GAF和△FAE中,
    AG=AE,∠GAF=∠FAE,AF=AF,
    ∴△AFG≌△AFE(SAS).
    ∴GF=EF.
    又∵DG=BE,
    ∴GF=BE+DF,
    ∴EF=BE+DF=80+40(﹣1)≈1.2(米),即这条道路EF的长约为1.2米.
    “点睛”此题主要考查了四边形综合题,关键是正确画出图形,证明△AFG≌△AEF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.
    16、y=﹣x或y=﹣x.
    【解析】
    根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).
    【详解】
    解:直线l的解析式为:y=kx,
    对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,
    ∴A(﹣4,0)、B(0,4),
    ∴OA=4,OB=4,
    ∴S△AOB=×4×4=8,
    当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC=,
    作CF⊥OA于F,CE⊥OB于E,
    ∴×AO•CF=,即×4×CF=,
    ∴CF=.
    当y=时,x=﹣,
    则=﹣k,
    解得,k=﹣,
    ∴直线l的解析式为y=﹣x;
    当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF=,
    解得直线l的解析式为y=﹣x.
    故答案为y=﹣x或y=﹣x.
    本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.
    17、(1)①△EBF是等边三角形,见解析;②DE=1;(2)S1-S2的值是定值,S1-S2=4.
    【解析】
    (1)①△EBF是等边三角形.连接BD,证明△ABE≌△DBF(ASA)即可解决问题.
    ②如图1中,作BH⊥AD于H.求出△ABE的面积,利用三角形的面积公式求出AE即可解决问题.
    (2)如图2中,结论:S1-S2的值是定值.想办法证明:S1-S2=S△BCD即可.
    【详解】
    解:(1)①△EBF是等边三角形.理由如下:
    如图1中,连接BD,
    ∵四边形ABCD是菱形,
    ∴AD=AB,
    ∵∠ADB=60°,
    ∴△ADB是等边三角形,△BDC是等边三角形,
    ∴AB=BD,∠ABD=∠A=∠BDC=60°,
    ∵∠ABD=∠EBF=60°,
    ∴∠ABE=∠DBF,
    在△ABE和△DBF中,,
    ∴△ABE≌△DBF(ASA),
    ∴BE=BF,
    ∵∠EBF=60°,
    ∴△EBF是等边三角形.
    ②如图1中,作BH⊥AD于H.
    在Rt△ABH中,BH=2,
    ∴S△ABD=•AD•BH=4,
    ∵S四边形ABFD=7,
    ∴S△BDF=S△ABE=3,
    ∴=3,
    ∴AE=3,
    ∴DE=AD=AE=1.
    (2)如图2中,结论:S1-S2的值是定值.
    理由:∵△BDC,△EBF都是等边三角形,
    ∴BD=BC,∠DBC=∠EBF=60°,BE=BF,
    ∴∠DBE=∠CBF,
    ∴△DBE≌△CBF(SAS),
    ∴S△BDE=S△BCF,
    ∴S1-S2=S△BDE+S△BOC-S△DOE=S△DOE+S△BOD+S△BOC-S△DOE=S△BCD=×42=4.
    故S1-S2的值是定值.
    本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    18、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2
    【解析】
    (1)根据三角形的面积公式求解;
    (2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;
    (3)根据S△BDF= S△BDC可得S△BCH= S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.
    【详解】
    (1)∵当点E与点D重合时,
    ∴CE=CD=6,
    ∵四边形ABCD,四边形CEFG是正方形,
    ∴DF=CE=AD=AB=6,
    ∴S△BDF=×DF×AB=1,
    当点E为CD的中点时,如图,连接CF,
    ∵四边形ABCD和四边形CEFG均为正方形;
    ∴∠CBD=∠GCF=25°,
    ∴BD∥CF,
    ∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,
    故答案为:1,1.
    (2)S△BDF=S正方形ABCD,
    证明:连接CF.
    ∵四边形ABCD和四边形CEFG均为正方形;
    ∴∠CBD=∠GCF=25°,
    ∴BD∥CF,
    ∴S△BDF= S△BDC=S正方形ABCD;
    (3)由(2)知S△BDF= S△BDC,
    ∴S△BCH= S△DFH=,
    ∴,
    ∴,,
    ∴,
    ∴EF=2,
    ∴正方形CEFG的边长为2.
    本题是四边形综合题,考查了正方形的性质,三角形的面积公式,平行线的性质,灵活运用这些性质进行推理是本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    把x与y代入计算即可求出xy的值
    【详解】
    解:当,时,
    ∴ ;
    故答案为:1.
    此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.
    20、减小
    【解析】
    【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
    【详解】∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),
    ∴0=k+3,
    ∴k=﹣3,
    ∴y的值随x的增大而减小,
    故答案为减小.
    【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.
    21、2或或
    【解析】
    分情况讨论:
    (1)当PB为腰时,若P为顶点,则E点与C点重合,如图1所示:
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,
    ∵P是AD的中点,
    ∴AP=DP=2,
    根据勾股定理得:BP===;
    若B为顶点,则根据PB=BE′得,E′为CD中点,此时腰长PB=;
    (2)当PB为底边时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;
    ①当E在AB上时,如图2所示:
    则BM=BP=,
    ∵∠BME=∠A=90°,∠MEB=∠ABP,
    ∴△BME∽△BAP,
    ∴,即,
    ∴BE=;
    ②当E在CD上时,如图3所示:
    设CE=x,则DE=4−x,
    根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,
    ∴42+x2=22+(4−x)2,
    解得:x=,
    ∴CE=,
    ∴BE= ==;
    综上所述:腰长为:,或,或;
    故答案为,或,或.
    点睛:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质并能进行推理计算是解决问题的关键.
    22、>
    【解析】
    分析:m<0,在每一个象限内,y随x的增大而增大.
    详解:因为m<0,所以m-3<m-1<0,这两个点都在第二象限内,
    所以y2<y1,即y1>y2.
    故答案为>.
    点睛:对于反比例函数图象上的几个点,如果知道横坐标去比较纵坐标的大小或知道纵坐标去比较横坐标的大小,通常的做法是:(1)先判断这几个点是否在同一个象限内,如果不在,则判断其正负,然后做出判断;(2)如果在同一个象限内,则可以根据反比例函数的性质来进行解答.
    23、﹣1.
    【解析】
    解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) 反比例关系式为:,m=-3; (2)点M(2,0) ;(3)x

    相关试卷

    2024年甘肃省会师中学九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024年甘肃省会师中学九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃省榆中学县九上数学开学统考模拟试题【含答案】:

    这是一份2024-2025学年甘肃省榆中学县九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃省陇南市徽县数学九上开学综合测试模拟试题【含答案】:

    这是一份2024-2025学年甘肃省陇南市徽县数学九上开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map