2024年甘肃省兰州十九中学教育集团九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)y=(m﹣1)x|m|+3m表示一次函数,则m等于( )
A.1B.﹣1C.0或﹣1D.1或﹣1
2、(4分)两次小测验中,李红分别得了64分(满分80分)和82分(满分100分),如果都按满分100分计算,李红两次成绩的平均分为( )
A.73B.81C.64.8D.80
3、(4分)使等式成立的x的值是( )
A.是正数B.是负数C.是0D.不能确定
4、(4分)下列命题正确的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
5、(4分)某汽车制造厂为了使顾客了解一种新车的耗油量,公布了调查20辆该车每辆行驶100千米的耗油量,在这个问题中总体是( )
A.所有该种新车的100千米耗油量B.20辆该种新车的100千米耗油量
C.所有该种新车D.20辆汽车
6、(4分)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为( )
A.2B.3C.D.
7、(4分)在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
A.k>1B.k>0C.k≥1D.k<1
8、(4分)如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为( )
A.x≥3 B.x≤3 C.x≤2 D.x≥2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)四边形ABCD中,,,,,则______.
10、(4分)若是一元二次方程的解,则代数式的值是_______
11、(4分)将化成最简二次根式为______.
12、(4分)已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.
13、(4分)根据指令,机器人在平面上能完成下列动作:先原地逆时针旋转角度,再朝其面对的方向沿直线行走距离,现机器人在平面直角坐标系的坐标原点,且面对轴正方向.请你给机器人下一个指令__________,使其移动到点.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?
15、(8分)甲、乙两名自行车爱好者准备在段长为3500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系根据图中信息,回答下列问题:
(1)乙的速度为多少米/秒;
(2)当乙追上甲时,求乙距起点多少米;
(3)求线段BC所在直线的函数关系式.
16、(8分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.
(1)证明:;
(2)判断与的位置关系,并证明你的结论;
(3)求的长.
17、(10分)在等边三角形ABC中,高AD=m,求等边三角形ABC的面积.
18、(10分)一项工程若由甲队单独去做,刚好能如期完成;若由乙队单独做,要比规定时间多用5天才完成;若甲乙两队合做4天,余下的工程由乙队单独去做,也正好如期完成.这项工程预期几天完成?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.
20、(4分)如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)
21、(4分)已知在△ABC中,∠ABC和∠ACB的角平分线交于O,且∠ABC的角平分线与∠ACB的外角平分线交于P,∠OPC和∠OCP角平分线交于H,∠H=117.5°,则∠A=________
22、(4分)如图,在矩形中,不重叠地放上两张面积分别是和的正方形纸片和.矩形没被这两个正方形盖住的面积是________;
23、(4分)如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
设某户每月用水量x(立方米),应交水费y(元).
(1)求a,c的值;
(2)当x≤6,x≥6时,分别写出y与x的函数关系式;
(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?
25、(10分)关于的一元二次方程
求证:方程总有两个实数根
若方程两根且,求的值
26、(12分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.
2、B
【解析】
李红得分和竞赛试卷的满分100的比值一定,所以李红应的分和竞赛试卷的满分是100分成正比例,由此列式解答即可.
【详解】
解:设李红应得 x分,
则,
1x=6400,
x=1.
∴李红两次成绩的平均分为:,
故选B.
本题考查了比例在日常生活中的应用,要正确判断哪两种量成正比例.
3、C
【解析】
根据二次根式有意义的条件:被开方数大于等于0即可得出答案.
【详解】
根据题意有
解得 ,
故选:C.
本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
4、D
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
A、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故A选项错误;
B、对角线互相垂直的四边形也可能是一般四边形,故B选项错误;
C、对角线相等的四边形有可能是等腰梯形,故C选项错误.
D、一组邻边相等的矩形是正方形,故D选项正确.
故选:D.
本题考查特殊平行四边形的判定,需熟练掌握各特殊四边形的特点.
5、A
【解析】
首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:在这个问题中总体是:所有该种新车的100千米耗油量;
样本是:20辆该种新车的100千米耗油量;
样本容量为:20
个体为:每辆该种新车的100千米耗油量;
故选:A.
本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
6、A
【解析】
如图,延长FD到G,使DG=BE,连接CG、EF,证△GCF≌△ECF,得到GF=EF,再利用勾股定理计算即可.
【详解】
解:如图,延长FD到G,使DG=BE,连接CG、EF
∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)
∴CG=CE,∠DCG=∠BCE
∴∠GCF=45°
在△GCF与△ECF中
∵GC=EC,∠GCF=∠ECF,CF=CF
∴△GCF≌△ECF(SAS)
∴GF=EF
∵CE=,CB=6
∴BE===3
∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x
∴EF==
∴
∴x=4,即AF=4
∴GF=5
∴DF=2
∴CF===
故选A.
本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.
7、A
【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
【详解】
解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
即可得k﹣1>0,
解得k>1.
故选A.
【点评】
本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
8、A
【解析】
将点A(m,3)代入y=−x+4得,−m+4=3,
解得,m=2,
所以点A的坐标为(2,3),
由图可知,不等式kx⩾−x+4的解集为x⩾2.
故选D
本题考查了一次函数和不等式(组)的关系以及数形结合思想的应用.解决此类问题的关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
画出图形,作CE⊥AD,根据矩形性质和勾股定理求出DE,再求BC.
【详解】
已知,如图所示,作CE⊥AD,则=,
因为,,
所以,==,
所以,四边形ABCE是矩形,
所以,AE=BC,CE=AB=3,
在Rt△CDE中,
DE=,
所以,BC=AE=AE-DE=6-4=2.
故答案为2
本题考核知识点:矩形的判定,勾股定理. 解题关键点:构造直角三角形.
10、-3
【解析】
将代入到中即可求得的值.
【详解】
解:是一元二次方程的一个根,
,
.
故答案为:.
此题主要考查了一元二次方程的解(根的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
11、1
【解析】
最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
【详解】
化成最简二次根式为1.
故答案为1
本题考核知识点:简二次根式.解题关键点:理解简二次根式的条件.
12、2
【解析】
图象经过一、三象限,还过第二象限,所以直线与y轴的交点在正半轴上,则b>2.
【详解】
解:∵图象经过第一、二、三象限,
∴直线与y轴的交点在正半轴上,则b>2.
∴符合条件的b的值大于2即可.
∴b=2,
故答案为2.
考查了一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数及常数是大于2或是小于2.
13、 [3,135°].
【解析】
解决本题要根据旋转的性质,构造直角三角形来解决.
【详解】
解:如图所示,设此点为C,属于第二象限的点,过C作CD⊥x轴于点D,
那么OD=DC=3,
∴∠COD=45°,OC=OD÷cs45°=,
则∠AOC=180°−45°=135°,
那么指令为:[,135°]
故答案为:[,135°]
本题考查求新定义下的点的旋转坐标;应理解运动指令的含义,构造直角三角形求解.
三、解答题(本大题共5个小题,共48分)
14、该商品每个定价为1元,进货100个.
【解析】
利用销售利润=售价﹣进价,根据题中条件可以列出利润与x的关系式,求出即可.
解:设每个商品的定价是x元,
由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,
整理,得x2﹣110x+3000=0,
解得x1=50,x2=1.
当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;
当x=1时,进货180﹣10(1﹣52)=100个<180个,符合题意.
答:当该商品每个定价为1元时,进货100个.
15、 (1)14;(2)乙距起点2100米;(3)BC所在直线的函数关系式为s=2t-300.
【解析】
(1)设乙的速度为x米/秒,根据图象得到300+150×12=150x,解方程即可;
(2)由图象可知乙用了150秒追上甲,用时间乘以速度即可;
(3)先计算出乙完成全程所需要的时间为=250(秒),则乙追上甲后又用了250−150=100秒到达终点,所以这100秒他们相距100×(14−12)米,可得到C点坐标,而B点坐标为(150,0),然后利用待定系数法求线段BC所在直线的函数关系式即可.
【详解】
解:(1)设乙的速度为x米/秒,
则300+150×12=150x,
解得x=14,
故答案为:14.
(2)由图象可知乙用了150秒追上甲,14×150=2100(米).
∴当乙追上甲吋,乙距起点2100米.
(3)乙从出发到终点的时间为=250(秒),
此时甲、乙的距离为:(250-150)(14-12)=200(米),
∴C点坐标为 (250,200),B点坐标为(150,0)
设BC所在直线的函数关系式为s=kt+b(k0,k,b为常数),
将B、C两点代入,得,
解得
∴BC所在直线的函数关系式为s=2t-300.
本题考查了一次函数的应用及待定系数法求一次函数的解析式:先设一次函数的解析式为y=kx+b(k≠0),然后把一次函数图象上的两点的坐标分别代入,得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了从函数图象获取信息的能力.
16、(1)证明见解析;(2)MN垂直平分EF,证明见解析;(3)MN=.
【解析】
(1)依据BE、CF是锐角△ABC的两条高,可得∠ABE+∠A=90°,∠ACF+∠A=90°,进而得出∠ABE=∠ACF;
(2)连接EM、FM,根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据等腰三角形三线合一的性质解答;
(3)求出EM、EN,然后利用勾股定理列式计算即可得解.
【详解】
解:(1)∵BE、CF是锐角△ABC的两条高,
∴∠ABE+∠A=90°,∠ACF+∠A=90°,
∴∠ABE=∠ACF;
(2)MN垂直平分EF.
证明:如图,连接EM、FM,
∵BE、CF是锐角△ABC的两条高,M是BC的中点,
∴EM=FM=BC,
∵N是EF的中点,
∴MN垂直平分EF;
(3)∵EF=6,BC=24,
∴EM=BC=×24=12,EN=EF=×6=3,
由勾股定理得,MN=.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造出等腰三角形是解题的关键.
17、S=.
【解析】
如图,求出BC的长即可解决问题.
【详解】
解:如图,
设等边三有形边长为,由勾股定理,得:
,
∴
∴面积为:S=
本题考查等边三角形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、这项工程预期21天完成.
【解析】
首先设规定的工期是x天,则甲队完成这项工程要x天,乙队完成这项工程要(x+5)天.根据题意可得等量关系:甲干4天的工作量+乙干x天的工作量=1,根据等量关系列出方程即可.
【详解】
设规定的工期是x天,则甲队完成这项工程要x天,乙队完成这项工程要(x+5)天.
由题意可列方程:=1,
解这个方程得:x=21
检验:x=21时,x(x+5)≠1.
故x=21是原方程的解.
答:这项工程预期21天完成.
此题考查分式方程的应用,解题关键在于列出方程
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额与购书数的函数关系式,再进行整理即可得出答案.
【详解】
解:根据题意得:
,
整理得:;
则付款金额(单位:元)与购书数量(单位:本)之间的函数关系是;
故答案为:.
本题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意的取值范围.
20、①②③
【解析】
根据折叠性质可得OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,即可得出∠ACB=30°,进而可得∠OCF=∠DCF=∠BAE=∠OAE=30°,可证明
AE//CF,AE=CE,根据矩形性质可得CE//AF,即可得四边形AECF是平行四边形,进而可得四边形AECF为菱形,由∠BAE=30°,可得∠AEB=60°,即可得∠AEC=120°,根据含30°角的直角三角形的性质可求出BE的长,即可得OE的长,根据菱形的面积公式即可求出四边形AECF的面积,根据含30°角的直角三角形的性质即可求出AB:BC的值,综上即可得答案.
【详解】
∵矩形ABCD分别沿AE、CF折叠,B、D两点恰好都落在对角线的交点O上,
∴OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,
∴∠ACB=∠CAD=30°,∠BAC=∠ACD=60°,
∵∠OCF=∠DCF,∠BAE=∠OAE,
∴∠OCF=∠DCF=∠BAE=∠OAE=30°,
∴AE//CF,AE=CE,
∴四边形AECF是平行四边形,
∵AE=CE,
∴四边形AECF是菱形,故①正确,
∵∠BAE=30°,∠B=90°,
∴∠AEB=60°,
∴∠AEC=120°,故②正确,
设BE=x,
∵∠BAE=30°,
∴AE=2x,
∴x2+22=(2x)2,
解得:x=,
∴OE=BE=,
∴S菱形AECF=EFAC=××4=,故③正确,
∵∠ACB=30°,
∴AC=2AB,
∴BC==AB,
∴AB:BC=1:,故④错误,
综上所述:正确的结论有①②③,
故答案为:①②③
本题考查矩形的性质、菱形的判定与性质及含30°角的直角三角形的性质,熟练掌握相关性质及判定方法是解题关键.
21、70°
【解析】
根据三角形内角和定理,可得∠HCP+∠HPC=62.5°,由角平分线的性质,得∠OCP+∠OPC=125°,由三角形外角性质,得到∠BOC的度数,然后∠OBC+OCB=55°,然后可以计算得到∠A的度数.
【详解】
解:∵∠H=117.5°,
∴∠HCP+∠HPC=180°-117.5°=62.5°,
∵CH平分∠OCP,PH平分∠OPC,
∴∠OCP+∠OPC=2(∠HCP+∠HPC)= 125°,
∴∠BOC=125°,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
本题考查了角平分线的性质,三角形的内角和定理,三角形的外角性质,解题的关键是灵活运用性质求出有关的角度.
22、
【解析】
先根据正方形的面积求出正方形纸片和的边长,求出长方形的面积,然后用长方形的面积减去两个正方形纸片的面积即可.
【详解】
∵正方形纸片和的面积分别为和,
∴BC=cm,AE=cm,
.
故答案为:.
本题考查了二次根式混合运算的应用,根据题意求出矩形的面积是解题关键.
23、75
【解析】
因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
所以∠BAE=15°,所以∠AEB=90°-15°=75°.
故答案为75.
二、解答题(本大题共3个小题,共30分)
24、 (1)1.5;6;(2)y=6x-27,(x>6);(3)21元.
【解析】
(1)根据表格中的数据,9月份属于第一种收费,5a=7.5;10月份属于第二种收费,6a+(9-6)c=27;即可求出a、c的值;(2)就是求分段函数解析式;(3)代入解析式求函数值.
【详解】
解:(1)由题意5a=7.5,解得a=1.5;
6a+(9−6)c=27,解得c=6.
∴a=1.5,c=6
(2)依照题意,
当x≤6时,y=1.5x;
当x≥6时,y=6×1.5+6×(x−6)=9+6(x−6)=6x−27,
(3)将x=8代入y=6x−27(x>6)得y=6×8−27=21(元).
答:该户11 月份水费是21元.
主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.
25、 (1)证明见解析;(2)k=±4.
【解析】
(1)证明根的判别式△≥0即可;
(2)由根与系数的关系可得,,继而利用完全平方公式的变形可得关于k的方程,解方程即可.
【详解】
(1),
,
∵,
∴Δ≥0,
方程总有两个实数根;
(2),,
∴,
∴.
本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握相关知识是解题的关键.
26、(1)证明见试题解析;(2)1.
【解析】
试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
试题解析:(1)∵AB=DC,∴AC=DB,
在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
∴当BE=1时,四边形BFCE是菱形,
故答案为1.
【考点】
平行四边形的判定;菱形的判定.
题号
一
二
三
四
五
总分
得分
批阅人
2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省武威市民勤五中学九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年甘肃省武威市民勤五中学九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年白山市重点中学九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024年白山市重点中学九上数学开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。