2024年甘肃省兰州市城关区天庆实验中学九上数学开学经典试题【含答案】
展开
这是一份2024年甘肃省兰州市城关区天庆实验中学九上数学开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知x1,x2是方程的两个根,则的值为( )
A.1B.-1C.2D.-2
2、(4分)解分式方程﹣3=时,去分母可得( )
A.1﹣3(x﹣2)=4B.1﹣3(x﹣2)=﹣4
C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=4
3、(4分)如图,将一个含30°角的直角三角板ABC绕点A旋转,使得点B、A、C′在同一条直线上,则旋转角∠BAB′的度数是( ).
A.90°B.120°C.150°D.160°
4、(4分)如图,在中,,垂足为,,,则的长为( )
A.B.C.D.
5、(4分)下列说法:
①对角线互相垂直的四边形是菱形;
②矩形的对角线垂直且互相平分;
③对角线相等的四边形是矩形;
④对角线相等的菱形是正方形;
⑤邻边相等的矩形是正方形.其中正确的是( )
A.个B.个C.个D.个
6、(4分)下列各式能利用完全平方公式分解因式的是( )
A.B.C.D.
7、(4分)已知一组数据,,,,的平均数为5,则另一组数据,,,,的平均数为( )
A.4B.5C.6D.7
8、(4分)某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若是正比例函数,则的值为______.
10、(4分)正比例函数图象经过,则这个正比例函数的解析式是_________.
11、(4分)如图,直线y=3x和y=kx+2相交于点P(a,3),则关于x不等式(3﹣k)x≤2的解集为_____.
12、(4分)如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.
13、(4分)2﹣6+的结果是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.
(1)求点A、B、D的坐标;
(2)求直线BD的表达式.
15、(8分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.
16、(8分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.
(1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;
(2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?
17、(10分)计算:
18、(10分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
(1)谁先出发早多长时间谁先到达B地早多长时间?
(2)两人在途中的速度分别是多少?
(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若为三角形三边,化简___________.
20、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.
21、(4分)分解因式:=________.
22、(4分)小刚从家到学校的路程为2km,其中一段是lkm的平路,一段是lkm的上坡路.已知小刚在上坡、平路和下坡的骑车速度分别为akm/h,2akm/h,3akm/h,则小刚骑车从家到学校比从学校回家花费的时间多_____h.
23、(4分)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.
(1)参加此次研学旅行活动的老师有 人;学生有 人;租用客车总数为 辆;
(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;
(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
25、(10分)分解因式和利用分解因式计算
(1)(a2+1)2-4a2
(2)已知x+y=1.2,x+3y=1,求3x2+12xy+12y2的值。
26、(12分)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,EF.
(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;
(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;
(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
直接利用根与系数的关系可求得答案.
【详解】
∵x1、x2是方程的两个根,
∴x1+x2=-1,
故选:B.
此题考查根与系数的关系,掌握方程两根之和等于-是解题的关键.
2、B
【解析】
方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.
【详解】
方程两边同时乘以(x-2),得
1﹣3(x﹣2)=﹣4,
故选B.
本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
3、C
【解析】
根据旋转角的定义,对应点与旋转中心所连线段的夹角等于旋转角,即可求解.
【详解】
旋转角是∠BAB′=180°-30°=150°.
故选C.
本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
4、A
【解析】
根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.
【详解】
由题意知,,
∴∠ADC=∠BDC=90°,∠A=∠BCD,
∴△ACD∽△CBD,
∴,
即,
∵,,
∴CD=4,
故选:A.
本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.
5、B
【解析】
利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.
【详解】
解:①对角线互相垂直的四边形不一定是菱形,故①错误;
②矩形的对角线相等且互相平分,故②错误;
③对角线相等的四边形不一定是矩形,故③错误;
④对角线相等的菱形是正方形,故④正确,
⑤邻边相等的矩形是正方形,故⑤正确
故选B.
本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.
6、B
【解析】
根据完全平方公式的特点逐一判断以上选项,即可得出答案.
【详解】
(1)不符合完全平方公式的特点,故本选项错误;(2)=,故本选项正确;(3)不符合完全平方公式的特点,故本选项错误;(4)不符合完全平方公式的特点,故本选项错误。因此答案选择B.
本题考查的是利用完全平方公式进行因式分解,重点需要掌握完全平方公式的特点:首尾皆为平方的形式,中间则是积的两倍.
7、D
【解析】
根据平均数的性质,所有数之和除以总个数即可得出平均数.
【详解】
依题意得:a1+4+a2-1+a3+1+a4-5+a5+5
=a1+a2+a3+a4+a5+10
=35,
所以平均数为35÷5=1.
故选D.
本题考查的是平均数的定义,本题利用了整体代入的思想,解题的关键是了解算术平均数的定义,难度不大.
8、D
【解析】
试题分析:由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.
解:依题意,0~20min散步,离家路程从0增加到900m,
20~30min看报,离家路程不变,
30~45min返回家,离家从900m路程减少为0m,
且去时的速度小于返回的速度,
故选D.
【点评】此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据正比例函数的定义即可求解.
【详解】
依题意得a-1=1,解得a=2
此题主要考查正比例函数的定义,解题的关键是熟知正比例函数的特点.
10、
【解析】
设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.
【详解】
解:设这个正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点(3,−6),
∴−6=3k,
解得k=−2,
∴y=−2x.
故答案是:y=−2x.
此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.
11、x≤2.
【解析】
【分析】先把点P(a,3)代入直线y=3x求出a的值,可得出P点坐标,再根据函数图象进行解答即可.
【详解】∵直线y=3x和直线y=kx+2的图象相交于点P(a,3),
∴3=3a,解得a=2,
∴P(2,3),
由函数图象可知,当x≤2时,直线y=3x的图象在直线y=kx+2的图象的下方.
即当x≤2时,kx+2≥3x,即:(3-k)x≤2.
故正确答案为:x≤2.
【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.
12、
【解析】
根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.
【详解】
设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,
而EC=BC=4,在Rt△ECN中,由勾股定理可知,即
整理得16x=48,所以x=1.
故答案为:1.
本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.
13、
【解析】
先把各根式化为最简二次根式,再合并同类项即可.
【详解】
原式=-2+2
=3-2.
故答案为:3-2.
本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)A(﹣2,0),点B(0,1),D(2,﹣2);(2)y=﹣3x+1.
【解析】
(1)由于ー次函数y=2x+1的图象与x、y轴分别相交于点A、B,所以利用函数解析式即可求出AB两点的坐标,然后过D作DH⊥x轴于H点,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AHD=90°,AB=AD,接着证明△ABO≌△DAH,最后利用全等三角形的性质可以得到DH=AO=2,AH=BO=1,从而求出点D的坐标;
(2)利用待定系数法即可求解
【详解】
解:(1)∵当y=0时,2x+1=0,x=﹣2.
∴点A(﹣2,0).
∵当x=0时,y=1.
∴点B(0,1).
过D作DH⊥x轴于H点,
∵四边形ABCD是正方形,
∴∠BAD=∠AOB=∠AHD=90°,AB=AD.
∴∠BAO+∠ABO=∠BAO+∠DAH,
∴∠ABO=∠DAH.
∴△ABO≌△DAH.
∴DH=AO=2,AH=BO=1,
∴OH=AH﹣AO=2.
∴点D(2,﹣2).
(2)设直线BD的表达式为y=kx+b.
∴
解得 ,
∴直线BD的表达式为y=﹣3x+1.
此题考查一次函数综合题,利用全等三角形的性质是解题关键
15、 (1)甲;(2)乙.
【解析】
(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;
(2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果,结果大的胜出.
【详解】
(1)=(73+80+82+83)÷4=79.5,
∵80.25>79.5,
∴应选派甲;
(2)=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,
=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,
∵79.5<80.4,
∴应选派乙.
16、(1)y1=x+2,y2=x+20(2)见解析
【解析】
(1)由图像可知,l1的函数为一次函数,则设y1=k1x+b1.由图象知,l1过点(0,2)、(500,17),能够得出l 1的函数解析式.同理可以得出l2的函数解析式.
(2)由图像可知l1、 l2的图像交于一点,那么交点处白炽灯和节能灯的费用相同,即x+2=x+20,由此得出x=1000时费用相同;x<1000时,使用白炽灯省钱;x>1000时,使用节能灯省钱.
【详解】
(1)设l1的函数解析式为y1=k1x+b1,
由图象知,l1过点(0,2)、(500,17),
可得方程组,解得,
故,l1的函数关系式为y1=x+2;
设l2的函数解析式为y2=k2x+b2,
由图象知,l2过点(0,20)、(500,26),
可得方程组,解得,
y2=x+20;
(2)由题意得,x+2=x+20,解得x=1000,
故,①当照明时间为1000小时时,两种灯的费用相同;
②当照明时间超过1000小时,使用节能灯省钱.
③当照明时间在1000小时以内,使用白炽灯省钱.
本题主要考查求一次函数的解析式、一次函数在实际生活中的应用.一次函数为中考重点考查内容,熟练掌握求一次函数解析式的方法是解决本题的关键.
17、5
【解析】
原式
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
18、(1)甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲速为10千米/小时,乙速为40千米/小时;(3)y甲=10x,y乙=40x﹣1.
【解析】
(1)结合图象,依据点的坐标代表的意思,即可得出结论;
(2)由速度=路程÷时间,即可得出结论;
(3)根据待定系数法,可求出乙的函数表达式,结合甲的速度依据甲的图象过原点,可得出甲的函数表达式.
【详解】
解:(1)结合图象可知,甲先出发,早了3小时;乙先到达B地,早了3小时;
(2)甲的速度:80÷8=10km/h,
乙的速度:80÷(5-3)=40km/h.
(3)设y甲=kx,由图知:8k=80,k=10
∴y甲=10x;
设y乙=mx+n,由图知:
解得
∴y乙=40x﹣1
答:甲、乙在行驶过程中的路程与时间之间的函数关系式分别为:
y甲=10x,y乙=40x﹣1.
本题考查了一次函数中的相遇问题、用待定系数法求函数表达式,解题的关键是:(1)明白坐标系里点的坐标代表的意义;(2)知道速度=路程÷时间;(3)会用待定系数法求函数表达式.本题难度不大,属于基础题,做此类问题是,结合函数图象,找出点的坐标才能做对题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
根据三角形的三边关系得到m的取值范围,根据取值范围化简二次根式即可得到答案.
【详解】
∵2,m,4是三角形三边,
∴2
相关试卷
这是一份2023-2024学年甘肃省兰州市城关区天庆实验中学九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,抛物线,正六边形的边心距与半径之比为等内容,欢迎下载使用。
这是一份甘肃省兰州市城关区天庆实验中学2023-2024学年八年级数学第一学期期末联考试题含答案,共7页。试卷主要包含了如图,直线,直线,若,则,若,则的值为,如果分式的值为0,那么的值为等内容,欢迎下载使用。
这是一份甘肃省兰州市天庆实验中学2023—-2024学年上学期九年级期中数学试卷,共29页。