2024年广东省北亭实验学校数学九年级第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数y=的自变量x的取值范围是( )
A.x≥0且x≠2B.x≥0C.x≠2D.x>2
2、(4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为( )
A.B.C.4D.5
3、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,下列结论不一定成立的是
A.
B.
C.
D.
4、(4分)下列命题,是真命题的是( )
A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形
C.对角线互相垂直平分的四边形是正方形D.对角线相等的菱形是正方形
5、(4分)如图,图中的小正方形的边长为1,到点A的距离为的格点的个数是( )
A.7B.6C.5D.4
6、(4分)两个一次函数与,它们在同一直角坐标系中的图象可能是( )
A.B.
C.D.
7、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,∠ADB=30°,E为BC边上一点,∠AEB=45°,CF⊥BD于F.下列结论:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正确的结论有( )
A.①②B.②③C.①②④D.①②③
8、(4分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且,则=________ 度
10、(4分)如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.
11、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.
12、(4分)已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.
13、(4分)如图,Rt△中,分别是的中点,平分,交于点.若,,则的长是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,延长AB至点E,延长CD至点F,使得,连接EF,分别交AD,BC于点M,N,连接AN,CM.
(1)求证:;
(2)四边形AMCN是平行四边形吗?请说明理由.
15、(8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,AB边交y轴于点H,OC=4,∠BCO=60°.
(1)求点A的坐标
(2)动点P从点A出发,沿折线A﹣B一C的方向以2个单位长度秒的速度向终点C匀速运动,设△POC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,直接写出当t为何值时△POC为直角三角形.
16、(8分)如图,直线m的表达式为y =﹣3x+3,且与x轴交于点B,直线n经过点A(4,0),且与直线m交于点C(t,﹣3)
(1)求直线n的表达式.
(2)求△ABC的面积.
(3)在直线n上存在异于点C的另一点P,使△ABP与△ABC的面积相等,请直接写出点P的坐标是 .
17、(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
18、(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D.过点D作DE⊥AB于点E.求证:△ACD≌△AED.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平行四边形ABCD中,,,AE平分交BC于点E,则CE的长为______.
20、(4分)一组数据的平均数是则这组数据的方差为__________.
21、(4分)李老师到超市买了xkg香蕉,花费m元钱;ykg苹果,花费n元钱.若李老师要买3kg香蕉和2kg苹果共需花费_____元.
22、(4分)如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________.
23、(4分)将直线y=2x-3平移,使之经过点(1,4),则平移后的直线是____.
二、解答题(本大题共3个小题,共30分)
24、(8分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:
已知:如图,在长方形ABCD中,BC=4,AB=2,点E为AD的中点,BD和CE相交于点P.求△BPC的面积.
小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:
建立适合的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点的坐标,从而可求得△BPC的面积.
请你按照小明的思路解决这道思考题.
25、(10分)解方程:(1) (2)解方程x2-4x+1=0
26、(12分)如图1,在ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接DE,现将ADE绕点A逆时针旋转一定角度(如图2),连接BD,CE.
(1)求证:ABD≌ACE;
(2)延长BD交CE于点F,若AD⊥BD,BD=6,CF=4,求线段DF的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由被开方数大于等于0,分母不等于0可得x≥0且x−1≠0,即x≥0且x≠1.故选A.
【考点】本题考查函数自变量的取值范围.
2、C
【解析】
设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.
【详解】
设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,
∵D是BC的中点,
∴BD=3,
在Rt△BQD中,x2+32=(9﹣x)2,
解得:x=1.
故线段BQ的长为1.
故选:C.
此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.
3、D
【解析】
根据矩形性质进行判断:矩形的两条对角线相等,4个角是直角等.
【详解】
根据矩形性质, ,,只有D说法不正确的.
故选D
本题考核知识点:矩形性质. 解题关键点:熟记矩形性质.
4、D
【解析】
根据菱形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据平行四边形的判定方法对D进行判断.
【详解】
解:A、对角线互相垂直的平行四边形是菱形,所以A选项错误;
B、对角线相等的平行四边形是矩形,所以B选项错误;
C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;
D、对角线相等的菱形是正方形,正确,是真命题;所以D选项正确.
故选:D.
本题考查度的是命题的真假判断以及矩形、菱形的判定正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.熟练掌握矩形、菱形的判定定理是解答此题的关键.
5、B
【解析】
根据勾股定理、结合图形解答.
【详解】
解:∵,
∴能够成直角三角形的三边应该是1、2、,
∴到点A的距离为的格点如图所示:
共有6个,
故选:B.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么.
6、C
【解析】
根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.
【详解】
A、若a>0,b<0,符合,不符合,故不符合题意;
B、若a>0,b>0,符合,不符合,故不符合题意;
C、若a>0,b<0,符合,符合,故符合题意;
D、若a<0,b>0,符合,不符合,故不符合题意;
故选:C.
此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
7、D
【解析】
根据矩形的性质,由∠ADB=30°可得,△AOB和△COD都是等边三角形,再由∠AEB=45°,可得△ABE是等腰直角三角形,其边有特殊的关系,利用等量代换可以得出③AE=AO是正确的,①BE=CD是正确的,在正△COD中,CF⊥BD,可得DF=CD,再利用等量代换可得②BF=3DF是正确的,利用选项的排除法确定选项D是正确的.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,AC=BD,AO=CO=BO=DO,∠ABC=∠ADC=∠BAD=∠BCD=90°,
∵∠AEB=45°,
∴∠BAE=∠AEB=45°
∴AB=BE=CD,AE=AB=CD,
故①正确,
∵∠ADB=30°,
∴∠ABO=60°且AO=BO,
∴△ABO是等边三角形,
∴AB=AO,
∴AE=AO,
故③正确,
∵△OCD是等边三角形,CF⊥BD,
∴DF=FO=OD=CD=BD,
∴BF=3DF,
故②正确,
根据排除法,可得选项D正确,
故选:D.
考查矩形的性质,含有30°角的直角三角形的特殊的边角关系、等边三角形的性质和判定等知识,排除法可以减少对④的判断,从而节省时间.
8、D
【解析】
根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,DH=,CD=6x,根据三角形面积公式即可判断④.
【详解】
①∵四边形ABCD为正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;
③∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),故③正确;
④∵AE:AB=2:3,
∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
过H点作HM垂直于CD于M点,如图所示:
设HM=x,则DM=5x,DH==,CD=6x,
则S△DHC=×CD×HM=3x2,S△EDH=×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确,
所以正确的有4个,
故选D.
本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、72或
【解析】
分析:分两种情况讨论,分别构建方程即可解决问题.
详解:由题意可知:AD=DE,∴∠DAE=∠DEA,设∠DAE=∠DEA=x.
∵四边形ABCD是平行四边形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x.
①AE=AB时,若BE=BC,则有∠BEC=∠C,即(180°﹣x)=2x,解得:x=36°,∴∠C=72°;
若EC=EB时,则有∠EBC=∠C=2x.
∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得:x=,∴∠C=,
②EA=EB时,同法可得∠C=72°.
综上所述:∠C=72°或.
故答案为72°或.
点睛:本题考查了平行四边形的性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
10、1
【解析】
根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.
【详解】
解:∵AE的垂直平分线为DG
∴AF=EF,∠AFG=∠EFD=90°,DA=DE
∵四边形ABCD是平行四边形
∴DC∥AB,AD∥BC,DC=AB,
∴∠DEA=∠BAE
∵AE平分∠BAD交CD于点E
∴∠DAE=∠BAE
∴在△DEF和△GAF中
∴△DEF≌△GAF(ASA)
∴DE=AG
又∵DE∥AG
∴四边形DAGE为平行四边形
又∵DA=DE
∴四边形DAGE为菱形.
∴AG=AD
∵AD=4cm
∴AG=4cm
∵BG=1cm
∴AB=AG+BG=4+1=1(cm)
故答案为:1.
本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.
11、十
【解析】
根据正多边形的外角和为360°,除以每个外角的度数即可知.
【详解】
解:∵正多边形的外角和为360°,
∴正多边形的边数为,
故答案为:十.
本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.
12、17
【解析】
根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.
【详解】
依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,
故三边长为3,7,7故周长为17.
此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.
13、1;
【解析】
依据题意,DE是△ABC的中位线,则DE=5,根据平分线和角平分线的性质,易证△BDF是等腰三角形,BD=DF,D是BC中点,DF=,由EF=DE-DF,即可解出EF.
【详解】
∵D、E点是AC和BC的中点,
则DE是中位线,
∴DE∥AB,且DE=AB=5
∴∠ABF=∠BFD
又BF平分∠ABC,
∴∠ABF=∠FBD
∴∠BFD=∠FBD
∴△FDB是等腰三角形
∴DF=BD
又∵D是BC中点,
∴BD=3
∴DF=3
∴EF=DE-DF=5-3=1
故本题答案为1.
本题考查了平分线的性质、角平分线的性质、等腰三角形的判定及性质以及中位线的性质,熟练掌握相关知识点事解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)是,理由见解析
【解析】
(1)根据平行四边形的性质得出∠BAD=∠BCD,AB∥CD,根据平行线的性质得出∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,求出∠ADF=∠EBC,根据全等三角形的判定得出即可;
(2)根据全等求出DM=BN,求出AM=CN,根据平行四边形的判定得出即可.
【详解】
(1)证明:在中,,
∵,
∴,,
∴,
∵延长AB至点E,延长CD至点F,
∴,
又∵,
∴;
(2)由(1)知,
∴,
在中,,且
∴
∴,且,
∴四边形ANCN是平行四边形.
本题考查了平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.
15、(1);(2);(3)t=1或t=3
【解析】
(1)首先做辅助线BF⊥OC于F,AG⊥x轴于G,在Rt△BCF中,求出BF,BF=AG,OG=CF,又因为A在第二象限,即可得出点A的坐标.
(2)需分两种情况:
①当时,即P从A运动到B,求出三角形的面积,
②当时,即P从B运动到C,求出三角形的面积,
将两种情况综合起来即可得出最后结果.
(3)在(2)的条件下,当t=1或t=3时,根据三角形的性质,可以判定△POC为直角三角形.
【详解】
(1)如图,做辅助线BF⊥OC于F,AG⊥x轴于G
在Rt△BCF中,∠BCF=60°,BC=4,CF=2,BF=,
BF=AG=,OG=CF=2,A在第二象限,
故点A的坐标为(-2,)
(2)当时,即P从A运动到B,S==,
设P(m,n),∠BCO=60°,
当时,即P从B运动到C,BP=2t,
则cs30°==,
,
则S==
综上所述,
(3)在(2)的条件下,当t=1或t=3时,△POC为直角三角形.
此题主要考查在平面直角坐标系中,利用菱形的性质,进行求解点坐标,以及动点问题,再利用直角三角形的三角函数,即可得解.
16、(1)n的表达式为;(2)S△ABC的面积是4.5;(3)P点坐标为(6,3).
【解析】
(1)把C点坐标代入直线m,可求得t,再由待定系数法可求得直线n的解析式;
(2)可先求得B点坐标,则可求得AB,再由C点坐标可求得△ABC的面积;
(3)由面积相等可知点P到x轴的距离和点C到y轴的距离相等,可求得P点纵坐标,代入直线n的解析式可求得P点坐标.
【详解】
(1)∵直线m过C点,
∴-3=-3t+3,解得t=2,
∴C(2,-3),
设直线n的解析式为y=kx+b,
把A、C两点坐标代入可得
,
解得,
∴直线n的解析式为y=1.5x-6;
(2)在y=-3x+3中,令y=0,可得0=-3x+3,解得x=1,
∴B(1,0),且A(4,0),
∴AB=4-1=3,且C点到x轴的距离h=3,
∴S△ABC=
(3)由点P在直线n上,故可设P点坐标为(x,1.5x-6),
∵S△ABC=S△ABP,
∴P到x轴的距离=3,
∵C、P两点不重合,
∴P点的纵坐标为3,
∴1.5x-6=3,解得x=6,
∴P点坐标为(6,3).
本题主要考查一次函数的应用,掌握两直线的交点坐标满足每条直线的解析式是解题的关键.
17、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
【解析】
(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
18、见解析.
【解析】
首先根据AD平分∠CAB, ,可得CD=DE,即可证明△ACD≌△AED.
【详解】
证明: AD平分∠CAB
CD=DE
△ACD≌△AED(AAS).
本题主要考查三角形的全等证明,是基本知识,应当熟练掌握.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
由平行四边形的性质得出AB=CD=6,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD=6,AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BEA=∠BAE,
∴BE=AB=6,
∴CE=BC−BE=10−6=4;
故答案为:4
本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
20、8
【解析】
根据平均数的公式计算出x后,再运用方差的公式即可解出本题.
【详解】
x=6×5−2−6−10−8=4,
S=[(2−6) +(6−6) +(4−6) +(10−6) +(8−6) ]=×40=8,
故答案为:8.
此题考查算术平均数,方差,解题关键在于掌握运算法则
21、
【解析】
根据题意可以列出相应的代数式,本题得以解决.
【详解】
由题意可得:李老师要买3kg香蕉和2kg苹果共需花费:()(元).
故答案为.
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
22、
【解析】
首先根据等边三角形的性质可得A B'=AE=E B',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,,再证明∠B'AC=90°,再证得S△AEC=S△AEB',再求S△A B'C进而可得答案.
【详解】
解:∵为等边三角形,
∴A B'=AE=E B',∠B'=∠B'EA=60°,
根据折叠的性质,∠BCA=∠B'CA,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,AB=CD,
∴∠B'EA=∠B'CB,∠EAC=∠BCA,
∴∠ECA=∠BCA=30°,
∴∠EAC=30°,
∴∠B'AC=90°,
∵,
∴B'C=8,
∴AC==,
∵B'E=AE=EC,
∴S△AEC=S△AEB'= S△A B'C= × ×4×=,
故答案为.
此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.
23、y=2x+2
【解析】
【分析】先由平移推出x的系数是2,可设直线解析式是y=2x+k,把点(1,4)代入可得.
【详解】由已知可设直线解析式是y=2x+k,
因为,直线经过点(1,4),
所以,4=2+k
所以,k=2
所以,y=2x+2
故答案为y=2x+2
【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
解:如图,以为原点,为轴,为轴建立坐标系,
∵,,为长方形,
∴,,,
∵为中点,
∴,
直线过,,
∴的表达式为.
设表达式为,
将,和,代入得:
,
解得:,
∴表达式为,
联立,解得:,
∴,
.
25、(1)x1=1,;(2),.
【解析】
(1)先把原分式方程化为整式方程求出x的值,再把x的值代入最简公分母进行检验即可.(2)利用求根公式求解即可.
【详解】
(1)解:。
去分母,得:x(3x-2)+5(2x-3)=4(2x-3)(3x-2),
化简,得:7x2-20x+13=0,解得:x1=1,
(2) ,
,.
本题考查的是解一元二次方程和分式方程的解法,解题的关键是注意求根公式的运用及解分式方程需要检验.
26、(1)见解析;(2)2
【解析】
(1)由“SAS”可证△ABD≌△ACE;
(2)由全等三角形的性质可得BD=CE=6,∠AEC=∠ADB=90°,由“HL”可证Rt△AEF≌Rt△ADF,可得DF=EF=2.
【详解】
证明:(1)由图1可知:∠DAE=∠BAC,
∴∠DAE+∠CAD=∠BAC+∠CAD,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS);
(2)如图2,连接AF,
∵AD⊥BD,
∴∠ADB=∠ADF=90°,
∵△ABD≌△ACE,
∴BD=CE=6,∠AEC=∠ADB=90°,
∴EF=CE﹣CF=2,
∵AF=AF,AD=AE,
∴Rt△AEF≌Rt△ADF(HL),
∴DF=EF=2.
此题考查旋转的性质,全等三角形的判定及性质定理,熟记三角形全等的判定定理,确定对应相等的线段或角的关系由此证明三角形全等是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024年广东省北亭实验学校数学九上开学考试模拟试题【含答案】: 这是一份2024年广东省北亭实验学校数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省石家庄市石门实验学校数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年河北省石家庄市石门实验学校数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省广州市南沙区数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年广东省广州市南沙区数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。