2024年广东省东莞市高埗英华学校九上数学开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,为矩形的对角线的中点,过点作的垂线分别交、于点、,连结.若该矩形的周长为20,则的周长为( )
A.10B.9C.8D.5
2、(4分)如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是( )
A.B.C.D.
3、(4分)甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是,,则成绩比较稳定的是( )
A.甲B.乙C.甲和乙一样D.无法确定
4、(4分)下列描述一次函数y=﹣2x+5图象性质错误的是( )
A.y随x的增大而减小
B.直线与x轴交点坐标是(0,5)
C.点(1,3)在此图象上
D.直线经过第一、二、四象限
5、(4分)下列函数关系式中,y是x的反比例函数的是
A.B.C.D.
6、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.等边三角形B.等腰直角三角形
C.平行四边形D.菱形
7、(4分)当 x=-3 时,二次根式的值为( )
A.3B.-3C.±3D.
8、(4分)如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是_____.
10、(4分)五边形从某一个顶点出发可以引_____条对角线.
11、(4分)化简:=__.
12、(4分)若方程(k为常数)有两个不相等的实数根,则k取值范围为 .
13、(4分)如图,E是正方形ABCD的对角线BD上任意一点,四边形EGCG是矩形,若正方形ABCD的周长为a,则矩形EFCG的周长为_______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:+(2﹣π)0﹣()
15、(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
16、(8分)已知一次函数y1=3x-3的图象与反比例函数y2=的图象交于点A(a,3),B(-1,b).
(1)求a,b的值和反比例函数的表达式.
(2)设点P(h,y1),Q(h,y2)分别是两函数图象上的点.
①试直接写出当y1>y2时h的取值范围;
②若y2- y1=3,试求h的值.
17、(10分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
(1)如图1,猜想∠QEP= °;
(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.
18、(10分)有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分式的值为0,那么的值为_____.
20、(4分)如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.
21、(4分)将直线向上平移一个单位长度得到的一次函数的解析式为_______________.
22、(4分)计算-=_______.
23、(4分)二次函数的最大值是____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.
(1)分别求出AB,BC,AC的长;
(2)试判断△ABC是什么三角形,并说明理由.
25、(10分)如图,四边形ABCD的四个顶点都在网格上,且每个小正方形的边长都为1
(1)求四边形ABCD的面积;
(2)求∠BCD的度数.
26、(12分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等,可得出AE=CE,即可得出的周长.
【详解】
解:∵为矩形的对角线的中点,
∴AO=OC,
又∵AC⊥EF,
∴AE=CE,
又∵矩形的周长为20,
∴AD+CD=
∴的周长为CD+CE+DE= CD+AE+ DE=10
故答案为A.
此题主要考查利用线段垂直平分线的性质,进行等量转换,即可解题.
2、C
【解析】
结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.
【详解】
①当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,
∴,
②当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,,
∴,
,
,
,
③当点在上时,
∵正方形边长为4,为中点,
∴,
∵点经过的路径长为,
∴,,
∴,
综上所述:与的函数表达式为:
.
故答案为:C.
本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.
3、A
【解析】
方差决定一组数据的稳定性,方差大的稳定性差,方差小的稳定好.
【详解】
∵,
∴
∴甲同学的成绩比较稳定
故选:A.
本题考查了方差与稳定性的关系,熟知方差小,稳定性好是解题的关键.
4、B
【解析】
由于k=-2<0,则y随x的增大而减小可知A正确;把x=0,x=1分别代入直线的解析式可判断B、C的正误;再由b>0,则直线经过第一、二、四象限,故D正确.
【详解】
A、因为k=﹣2<0,则y随x的增大而减小,所以A选项的说法正确;
B、因为x=0,y=5,直线与y轴交点坐标是(0,5),所以B选项的说法错误;
C、因为当x=1时,y=﹣2+5=3,所以点(1,3)在此图象上,所以C选项的说法正确;
D、因为k<0,b>0,直线经过第一、二、四象限,所以D选项的说法正确.
故选:B.
本题考查了一次函数的性质,熟知一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b)是解答此题的关键.
5、D
【解析】
根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),可以判定函数的类型.
【详解】
A. 是一次函数,故此选项错误;
B. 是正比例函数,故此选项错误;
C. 不是反比例函数,故此选项错误;
D. 是反比例函数,故此选项正确。
故选D.
本题考查反比例函数的定义,熟练掌握反比例函数的定义对选项进行判断是解题关键.
6、D
【解析】
按照轴对称图形和中心对称图形的定义逐项判断即可.
【详解】
解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;
B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;
C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
D、菱形是轴对称图形,也是中心对称图形,故本选项正确.
故选:D.
本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是解题的关键.
7、A
【解析】
把x=-3代入二次根式进行化简即可求解.
【详解】
解:当x=-3时,.
故选A.
本题考查了二次根式的计算,正确理解算术平方根的意义是关键.
8、C
【解析】
本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A项.然后自行车又加快速度保持匀速前进,故可排除B,D.
【详解】
最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障,停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A一定错误.第三阶段李老师加快了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B,一定错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大.
故本题选C.
本题考查动点问题的函数图象问题,首先看清横轴和纵轴表示的量,然后根据实际情况:时间t和运动的路程s之间的关系采用排除法求解即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.
【详解】
解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则1a﹣11﹣2=0,即1a﹣16=0,
解得,a=1.
故答案是:1.
考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
10、1
【解析】
从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.
【详解】
解:从五边形的一个顶点出发有5﹣3=1条对角线,
故答案为:1.
本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.
11、1
【解析】
利用同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,即可得出答案.
【详解】
解:
=1.
故答案是:1.
考查了分式的加减法,熟练掌握运算法则是解本题的关键.
12、
【解析】
根据方程的系数结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论,
【详解】
解:∵方程(k为常数)的两个不相等的实数根,
∴>0,且,
解得:k<1,
故答案为:.
本题主要考查了根的判别式,掌握根的判别式是解题的关键.
13、
【解析】
由矩形EFCG,易得△BEF与△DEG是等腰直角三角形,只要证明矩形EFCG的周长=BC+CD即可.
【详解】
∵四边形ABCD是正方形,
∴∠DBC=∠BDC=45°,
∵正方形ABCD的周长为a,
∴BC+CD=,
∵四边形EFCG是矩形,
∴∠EFB=∠EGD=90°,
∴△BEF与△DEG是等腰直角三角形,
∴BF=EF,EG=DG,
∴矩形EFCG的周长是:EF+FC+CG+EG=BF+FC+CG+DG=BC+CD=.
故答案为:.
本题考查的是正方形的性质,熟知正方形的四条边相等,四个角都是直角是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、3.
【解析】
根据实数运算法则进行计算,特别要注意二次根式的运算法则.
【详解】
解:原式
=3
本题考核知识点:实数运算. 解题关键点:掌握实数运算法则,重点是二次根式运算法则.
15、(1)证明见解析;(2).
【解析】
(1)根据矩形ABCD的性质,判定△BOE≌△DOF(ASA),进而得出结论;
(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.
【详解】
(1)证明:∵四边形ABCD是矩形,O是BD的中点,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,BD⊥EF,
设BE=x,则 DE=x,AE=6-x,
在Rt△ADE中,DE2=AD2+AE2,
∴x2=42+(6-x)2,
解得:x= ,
∵BD= =2,
∴OB=BD=,
∵BD⊥EF,
∴EO==,
∴EF=2EO=.
本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键
16、(1)a=2 ,b=-6,y2=;(2)①-1<h<0 或 h>2,②h .
【解析】
(1)把A(a,3),B(-1,b)两点代入一次函数解析式中即可求出a,b的值,则可求出反比例函数的表达式(2)由图像可直接判断y1>y2时h的取值范围,把两表达式代入y1>y2中,解出h即可
【详解】
(1)∵点 A(a,3),B(-1,b)在一次函数 y1=3x-3 的图象上
∴a=2 b=-6
∴m=6 即反比例函数表达式为 y2=
(2)①由图象可知:当 y1>y2 时,-1<h<0 或 h>2
②∵ y2-y1=2即 ∴ =3h
∴h
本题考查了反比例函数与一次函数图象的交点问题,待定系数法求函数解析式,难度中等.
17、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
【解析】
(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
(2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
(3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
【详解】
解:(1)∠QEP=60°;
证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
则在△CPA和△CQB中,
,
∴△CQB≌△CPA(SAS),
∴∠CQB=∠CPA,
又因为△PEM和△CQM中,∠EMP=∠CMQ,
∴∠QEP=∠QCP=60°.
故答案为60;
(2)∠QEP=60°.以∠DAC是锐角为例.
证明:如图2,∵△ABC是等边三角形,
∴AC=BC,∠ACB=60°,
∵线段CP绕点C顺时针旋转60°得到线段CQ,
∴CP=CQ,∠PCQ=60°,
∴∠ACB+∠BCP=∠BCP+∠PCQ,
即∠ACP=∠BCQ,
在△ACP和△BCQ中,
,
∴△ACP≌△BCQ(SAS),
∴∠APC=∠Q,
∵∠1=∠2,
∴∠QEP=∠PCQ=60°;
(3)连结CQ,作CH⊥AD于H,如图3,
与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
∵∠DAC=135°,∠ACP=15°,
∴∠APC=30°,∠CAH=45°,
∴△ACH为等腰直角三角形,
∴AH=CH=AC=×4=,
在Rt△PHC中,PH=CH=,
∴PA=PH−AH=-,
∴BQ=−.
本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.
18、是,理由见解析.
【解析】
先在△ABC中,由∠B=90°,可得△ABC为直角三角形;根据勾股定理得出AC2=AB2+BC2=8,那么AD2+AC2=9=DC2,由勾股定理的逆定理可得△ACD也为直角三角形.
【详解】
都是直角三角形.理由如下:
连结AC.
在△ABC中,∵∠B=90°,
∴△ABC为直角三角形;
∴AC2=AB2+BC2=8,
又∵AD2+AC2=1+8=9,而DC2=9,
∴AC2+AD2=DC2,
∴△ACD也为直角三角形.
考点:1.勾股定理的逆定理;2.勾股定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
根据分式值为0得出分子等于0求出x的值,再根据分母不等于0排除x=1,即可得出答案.
【详解】
∵分式的值为0
∴
解得:x=1或x=-1
又x-1≠0
∴x=-1
故答案为-1.
本题考查的是分式的值为0,属于基础题型,注意分式值为0则分子等于0,但分母不等于0.
20、1
【解析】
利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再根据等角的余角相等证出∠ACD=∠A,从而证明DA=DC,从而得到CD=AB=1.
【详解】
由作法得MN垂直平分BC,
∴DB=DC,
∴∠B=∠BCD,
∵∠B+∠A=90°,∠BCD+∠ACD=90°,
∴∠ACD=∠A,
∴DA=DC,
∴CD=AB=×4=1.
故答案为1.
本题考查了作图﹣基本作图—作已知线段的垂直平分线,以及垂直平分线的性质和等腰三角形的判定,熟练掌握相关知识是解题的关键.
21、
【解析】
解:由平移的规律知,得到的一次函数的解析式为.
22、2
【解析】
利用二次根式的减法法则计算即可.
【详解】
解:原式
故答案为:
本题考查二次根式的减法运算,熟练掌握二次根式的减法运算法则是解题关键.
23、-5
【解析】
根据二次函数的性质求解即可.
【详解】
∵的a=-2<0,
∴当x=1时,有最大值-5.
故答案为-5.
本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y=.
二、解答题(本大题共3个小题,共30分)
24、(1),,;(2)是直角三角形,理由见解析
【解析】
(1)根据勾股定理即可分别求出AB,BC,AC的长;
(2)根据勾股定理逆定理即可判断.
【详解】
解:(1)根据勾股定理可知:,,;
(2)是直角三角形,理由如下:
,,
,
是直角三角形.
此题考查的是勾股定理和勾股定理的逆定理,掌握用勾股定理解直角三角形和用勾股定理逆定理判定直角三角形是解决此题的关键.
25、(1);(2)∠BCD=90°.
【解析】
(1)利用正方形的面积减去四个顶点上三角形及小正方形的面积即可;
(2)连接BD,根据勾股定理的逆定理判断出△BCD的形状,进而可得出结论.
【详解】
.解:(1)S四边形ABCD=5×7﹣×1×7﹣×1×2﹣×2×4﹣×3×6=;
(2)连BD,
∵BC=2,CD=,BD=5,BC2+CD2=BD2,
∴∠BCD=90°.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
26、需要m的铁棍.
【解析】
根据图中的几何关系,然后由菱形的四边相等可以求出答案.
【详解】
由题意,知两个大菱形的边长为: (m) .
小菱形的边长为: (m) .
所以三个菱形的周长的和为:(m) .
所以所需铁棍的总长为:1.8×9+2.4×2+2=m .
答:需要m的铁棍.
本题考查了菱形的性质及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.
题号
一
二
三
四
五
总分
得分
2024年广东省东莞市寮步宏伟中学九上数学开学综合测试模拟试题【含答案】: 这是一份2024年广东省东莞市寮步宏伟中学九上数学开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏泰州市高港实验学校数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年江苏泰州市高港实验学校数学九上开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广东省东莞市高埗英华学校九上数学期末综合测试模拟试题含答案: 这是一份2023-2024学年广东省东莞市高埗英华学校九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示的工件,其俯视图是,下列说法,错误的是等内容,欢迎下载使用。