![2024年广东省东莞市寮步宏伟中学九年级数学第一学期开学统考模拟试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16201277/0-1727515388713/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省东莞市寮步宏伟中学九年级数学第一学期开学统考模拟试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16201277/0-1727515388784/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省东莞市寮步宏伟中学九年级数学第一学期开学统考模拟试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16201277/0-1727515388806/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广东省东莞市寮步宏伟中学九年级数学第一学期开学统考模拟试题【含答案】
展开这是一份2024年广东省东莞市寮步宏伟中学九年级数学第一学期开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,四象限,则m的取值范围是,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知正比例函数y=(m﹣8)x的图象过第二、四象限,则m的取值范围是( )
A.m≥8B.m>8C.m≤8D.m<8
2、(4分)如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2,则树高为( )米.
A.1+B.1+C.2-1D.3
3、(4分)如图在5×5的正方形网格中(每个小正方形的边长为1个单位长度),格点上有A、B、C、E五个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接( )
A.AEB.ABC.ADD.BE
4、(4分)如图,,要根据“”证明,则还要添加一个条件是( )
A.B.C.D.
5、(4分)若正多边形的内角和是1080°,则该正多边形的一个外角为( )
A.B.C.D.
6、(4分)下列多项式中,不能运用公式法进行因式分解的是( )
A.x2+2xy+y2B.x2﹣9C.m2﹣n2D.a2+b2
7、(4分)如图,在的方格纸中,两点在格点上,线段绕某点逆时针旋转角后得到线段,点与对应,则角的大小为( )
A.B.C.D.
8、(4分)有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )
A.中位数B.平均数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是_____,最大值是_____.
10、(4分)如图,在菱形ABCD中,∠C=60º,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为____________.
11、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.
12、(4分)若式子在实数范围内有意义,则应满足的条件是_____________.
13、(4分)若分式的值为0,则x的值为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.
(1)利用图①证明:EF=2BC.
(2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.
15、(8分)为迎接购物节,某网店准备购进甲、乙两种运动鞋,甲种运动鞋每双的进价比乙种运动鞋每双的进价多60元,用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同.
(1)求甲、乙两种运动鞋的进价(用列分式方程的方法解答):
(2)该网店老板计划购进这两种运动鞋共200双,且甲种运动鞋的进货数量不少于乙种运动鞋数量的,甲种运动鞋每双售价为350元,乙种运动鞋每双售价为300元.设甲种运动鞋的进货量为m双,销售完甲、乙两种运动鞋的总利润为w元,求w与m的函数关系式,并求总利润的最大值.
16、(8分)近几年,随着电子产品的广泛应用,学生的近视发生率出现低龄化趋势,引起了相关部门的重视.某区为了了解在校学生的近视低龄化情况,对本区7-18岁在校近视学生进行了简单的随机抽样调查,并绘制了以下两幅不完整的统计图.
请根据图中信息,回答下列问题:
(1)这次抽样调查中共调查了近视学生 人;
(2)请补全条形统计图;
(3)扇形统计图中10-12岁部分的圆心角的度数是 ;
(4)据统计,该区7-18岁在校学生近视人数约为10万,请估计其中7-12岁的近视学生人数.
17、(10分)一辆货车从A地运货到240km的B地,卸货后返回A地,如图中实线是货车离A地的路程y(km)关于出发后的时间x(h)之间的函数图象.货车出发时,正有一个自行车骑行团在AB之间,距A地40km处,以每小时20km的速度奔向B地.
(1)货车去B地的速度是 ,卸货用了 小时,返回的速度是 ;
(2)求出自行车骑行团距A地的路程y(km)关于x的函数关系式,并在此坐标系中画出它的图象;
(3)求自行车骑行团与货车迎面相遇,是货车出发后几小时后,自行车骑行团还有多远到达B地.
18、(10分)解不等式组并把解集在数轴上表示出来
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=____度.
20、(4分)如果多项式是一个完全平方式,那么k的值为______.
21、(4分)如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为 ,点An的坐标为 .
22、(4分)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是 .
23、(4分)若反比例函数y=的图象经过A(﹣2,1)、B(1,m)两点,则m=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知,直线y=2x+3与直线y=-2x-1,求ΔABC的面积.
25、(10分)先化简,再求值:),其中.
26、(12分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).
(1)画出△ABC向下平移5个单位后的△A1B1C1;
(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据正比例函数的性质,首先根据图象的象限来判断m﹣1的大小,进而计算m的范围.
【详解】
解:∵正比例函数y=(m﹣1)x的图象过第二、四象限,
∴m﹣1<0,
解得:m<1.
故选:D.
本题主要考查正比例函数的性质,根据一次函数的一次项系数的正负确定图象所在的象限.
2、A
【解析】
根据题意利用勾股定理得出BC的长,进而得出答案.
【详解】
解:由题意得:在直角△ABC中,
AC2+AB2=BC2,
则12+22=BC2,
∴BC=,
∴树高为:(1+)m.
故选:A.
此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.
3、C
【解析】
根据勾股定理求出AD,BE,根据算术平方根的大小比较方法解答.
【详解】
AE=4,
AB=3,
由勾股定理得AD=,3<<4,
BE==1.
故选C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
4、A
【解析】
根据垂直定义求出∠CFD=∠AEB=90°,再根据得出,再根据全等三角形的判定定理推出即可.
【详解】
添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
∵,
∴,
在Rt△ABE和Rt△DCF中,
∴Rt△ABE=R△DCF(HL)
所以A选项是正确的.
本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.
5、A
【解析】
首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n-2)=1080,继而可求得答案.
【详解】
设这个正多边形的边数为n,
∵一个正多边形的内角和为1080°,
∴180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角是:360°÷8=45°.
故选:A..
此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.
6、D
【解析】
各项分解因式,即可作出判断.
【详解】
A、原式=(x+y)2,不符合题意;
B、原式=(x+3)(x-3),不符合题意;
C、原式=(m+n)(m-n),不符合题意;
D、原式不能分解因式,符合题意,
故选D.
此题考查了因式分解-运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.
7、C
【解析】
如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.
【详解】
解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′
∠AOA′即为旋转角,
∴旋转角为90°
故选:C.
考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.
8、A
【解析】
根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.
【详解】
去掉一个最高分和一个最低分对中位数没有影响,故选A.
考查了统计量的选择,解题的关键是了解中位数的定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1 2
【解析】
根据顶点式表示的二次函数,结合考虑-2≤x≤1,即可求解此题.
【详解】
解:将标准式化为两点式为y=2(x+1)2+1,﹣2≤x≤1
∵开口向上,
∴当x=1时,有最大值:ymax=2,
当x=﹣1时,ymin=1.
故答案为1,2.
考查了二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.
10、1
【解析】
先根据菱形的性质可得,再根据线段中点的定义可得,然后根据等边三角形的判定与性质可得,从而可得,最后根据菱形的周长公式即可得.
【详解】
四边形ABCD是菱形,
点E、F分别是AB、AD的中点
又
是等边三角形
则菱形ABCD的周长为
故答案为:1.
本题考查了菱形的性质、等边三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.
11、9
【解析】
∵四边形ABCD是矩形,
∴∠ABC=90°,BD=AC,BO=OD,
∵AB=6cm,BC=8cm,
∴由勾股定理得: (cm),
∴DO=5cm,
∵点E. F分别是AO、AD的中点,
(cm),
故答案为2.5.
12、
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
解:二次根式在实数范围内有意义,则x-1≥0,
解得:x≥1.
故答案为:x≥1.
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
13、-1
【解析】
根据分式的值为零的条件可以求出x的值.
【详解】
解:根据题意得:,
解得:x=-1.
故答案为:-1.
若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)成立,证明见解析.
【解析】
(1)根据等边三角形的性质,得∠ACB=60°,AC=BC.结合三角形外角的性质,得∠CAF=30°,则CF=AC,从而证明结论;
(2)根据(1)中的证明方法,得到CH=CF.根据(1)中的结论,知BE+CF=AC,从而证明结论.
【详解】
(1)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
∵∠F=30°,∴∠CAF=60°-30°=30°,∴∠CAF=∠F,∴CF=AC,∴CF=AC=BC,∴EF=2BC.
(2)成立.证明如下:
∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
∵∠F=30°,∴∠CHF=60°-30°=30°,∴∠CHF=∠F,∴CH=CF.
∵EF=2BC,∴BE+CF=BC.
又∵AH+CH=AC,AC=BC,∴AH=BE.
本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF=2BC是解题的关键.
15、(1)甲、乙两种运动鞋的进价分别为200元/双、140元/双;(2)w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.
【解析】
(1)根据用30000元购进甲种运动鞋的数量与用21000元购进乙种运动鞋的数量相同,可以得到相应的分式方程,从而可以解答本题;
(2)根据题意,可以得到w与m的函数关系式,再根据甲种运动鞋的进货数量不少于乙种运动鞋数量的,可以得到m的取值范围,最后根据一次函数的性质即可得到w的最大值.
【详解】
解:(1)设甲种运动鞋的价格是每双x元,则乙种运动鞋每双价格是(x﹣60)元,
,
解得,x=200,
经检验,x=200是原分式方程的解,
∴x﹣60=140,
答:甲、乙两种运动鞋的进价分别为200元/双、140元/双;
(2)由题意可得,
w=(350﹣200)m+(300﹣140)×(200﹣m)=﹣10m+32000,
∵甲种运动鞋的进货数量不少于乙种运动鞋数量的,
∴m≥(200﹣m),
解得,m≥50,
∴当m=50时,w取得最大值,此时w=31500,
答:w与m的函数关系式是w=﹣10m+32000,总利润的最大值是31500元.
本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用不等式的性质和一次函数的性质解答,注意分式方程要检验.
16、(1)1500;(2)详见解析;(3)108°;(5)1.
【解析】
(1)根据16-18岁的近视人数和所占总调查人数的百分率即可求出总调查人数;
(2)计算出7-9岁的近视人数即可补全条形统计图;
(3)求出10-12岁的近视人数占总调查人数的百分率,再乘360°即可;
(4)求出7-12岁的近视学生人数占总调查人数的百分率,再乘该区总人数即可.
【详解】
解:(1)这次抽样调查中共调查了近视学生人数为:330÷22%=1500人
故答案为:1500
(2)7-9岁的近视人数为:人
补全条形统计图如下:
(3)10-12岁部分的圆心角的度数是
故答案为:
(4)10万人=100000人
估计其中7-12岁的近视学生人数为人
答:7-12岁的近视学生人数约1人.
此题考查的是条形统计图和扇形统计图,掌握结合条形统计图和扇形统计图得出有用信息是解决此题的关键.
17、(1)60km/h,1小时,80km/h(2)y=20x+40 (0≤x≤10)(3)自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地
【解析】
分析:(1)根据速度,以及函数图象中的信息即可解决问题; (2)根据题意y=20x+40(0≤x≤10),画出函数图象即可; (3)利用方程组求交点坐标即可;
详解:(1)货车去B地的速度==60km/h,观察图象可知卸货用了1小时,
返回的速度==80km/h,故答案为60(km/h),1,80(km/h).
(2)由题意y=20x+40 (0≤x≤10),函数图象如图所示,
(3)货车返回时,y关于x的函数解析式是:y=﹣80x+640 (5≤x≤8)
解方程组,解得得,
答:自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地.
点睛:本题考查了一次函数的应用及速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.
18、见解析.
【解析】
先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法确定出不等式组的解集并在数轴上表示出来即可.
【详解】
,
解不等式①得:x≤1,
解不等式②得:x>-4,
所以不等式组的解集为-4
.
本题考查了解一元一次不等式组,熟练掌握解一元一次方程的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.
【详解】
解:∵正五边形的外角为10°÷5=72°,
∴∠C=180°﹣72°=108°,
∵CD=CB,
∴∠CDB=1°,
∵AF∥CD,
∴∠DFA=∠CDB=1°,
故答案为1.
本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.
20、8或-4
【解析】
根据完全平方公式的定义即可求解.
【详解】
=为完全平方公式,故=±6,
即得k=8或-4.
此题主要考查完全平方公式的形式,解题的关键是熟知完全平方公式.
21、A4(7,8);An(2n-1-1,2n-1).
【解析】
∵点B1的坐标为(1,1),点B2的坐标为(3,2)
∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),
∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.
∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;
A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;
A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,
A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).
∴An的纵坐标是:2n-1,横坐标是:2n-1-1,
即点An的坐标为(2n-1-1,2n-1).
故答案为(7,8);(2n-1-1,2n-1).
22、1.
【解析】
试题分析:因为菱形的对角线垂直平分,对角线AC,BD的长分别是6和8,
所以一半长是3和4,
所以菱形的边长是5,
所以周长是5×4=1.
故答案为:1.
考点:菱形的性质.
23、-2
【解析】
将点A代入反比例函数解出k值,再将B的坐标代入已知反比例函数解析式,即可求得m的值.
【详解】
解:∵反比例函数y=,它的图象经过A(-2,1),
∴1=,
∴k=-2
∴y=,
将B点坐标代入反比例函数得,
m=,
∴m=-2,
故答案为-2.
本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
二、解答题(本大题共3个小题,共30分)
24、2
【解析】
将直线y=2x+3与直线y=−2x−1组成方程组,求出方程组的解即为C点坐标,再求出A、B的坐标,得到AB的长,即可求出△ABC的面积.
【详解】
解:将直线y=2x+3与直线y=-2x-1联立成方程组得:
解得,即C点坐标为(-1,1).
∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=-2x-1与y轴的交点坐标为(0,-1),
∴AB=4,
∴.
本题考查了两条直线相交的问题,熟知函数图象上点的坐标特征是解题的关键.
25、,.
【解析】
试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.
试题解析:原式===,
当时,原式===.
考点:分式的化简求值.
26、 (1)见解析;(2)见解析,点A2(-3,1),B2(-4,4).
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用平移的性质再结合轴对称图形的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,点A2(-3,1),B2(-4,4).
此题主要考查了作图--轴对称变换,关键是正确确定组成图形的关键点关于x轴的对称点位置.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年广东省东莞市寮步宏伟中学九上数学开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省东莞市寮步宏伟中学2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了-5的倒数是,如果点A等内容,欢迎下载使用。
这是一份广东省东莞市寮步宏伟中学2023-2024学年九年级数学第一学期期末检测试题含答案,共7页。试卷主要包含了如图,在中,,则AC的长为等内容,欢迎下载使用。