![2024年广东省东莞市中学堂六校数学九年级第一学期开学考试模拟试题【含答案】01](http://www.enxinlong.com/img-preview/2/3/16201280/0-1727515409002/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省东莞市中学堂六校数学九年级第一学期开学考试模拟试题【含答案】02](http://www.enxinlong.com/img-preview/2/3/16201280/0-1727515409036/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省东莞市中学堂六校数学九年级第一学期开学考试模拟试题【含答案】03](http://www.enxinlong.com/img-preview/2/3/16201280/0-1727515409057/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广东省东莞市中学堂六校数学九年级第一学期开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将分式中的a与b都扩大为原来的2倍,则分式的值将( )
A.扩大为原来的2倍B.分式的值不变
C.缩小为原来的D.缩小为原来的
2、(4分)化简(﹣)2的结果是( )
A.±3B.﹣3C.3D.9
3、(4分)为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为( )吨.
A.1B.1.1C.1.13D.1.2
4、(4分)如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE,设,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )(提示:过点E、C、D作AB的垂线)
A.线段PDB.线段PCC.线段DED.线段PE
5、(4分)如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A.4B.3C.2D.
6、(4分)将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )
A.y=2x2+1B.y=2x2﹣3
C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣3
7、(4分)一元二次方程的根是( )
A.B.C.,D.无实数根
8、(4分)已知点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是( )
A.a>1B.a<﹣1
C.﹣1<a<1D.﹣1<a<0或0<a<1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4……的斜边OA1,OA2,OA3,OA4……都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=……=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3OA3=OC4……,则依此规律,点A2018的纵坐标为___.
10、(4分)阅读下面材料:
在数学课上,老师提出如下问题:
尺规作图:作一条线段的垂直平分线.
已知:线段AB.
求作:线段AB的垂直平分线.
小红的作法如下:
如图,①分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点C;
②再分别以点A和点B为圆心,大于AB的长为半径(不同于①中的半径)作弧,两弧相交于点D,使点D与点C在直线AB的同侧;
③作直线CD.
所以直线CD就是所求作的垂直平分线.
老师说:“小红的作法正确.”
请回答:小红的作图依据是_____.
11、(4分)若对于的任何值,等式恒成立,则__________.
12、(4分)菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.
13、(4分)一个弹簧不挂重物时长10cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为_____(不需要写出自变量取值范围)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求直线BP的解析式.
15、(8分)用适当的方法解下列方程:
(1)
(2)
16、(8分)如图,在中,,D在边AC上,且.
如图1,填空______,______
如图2,若M为线段AC上的点,过M作直线于H,分别交直线AB、BC与点N、E.
求证:是等腰三角形;
试写出线段AN、CE、CD之间的数量关系,并加以证明.
17、(10分)某G20商品专卖店每天的固定成本为400元,其销售的G20纪念徽章每个进价为3元,销售单价与日平均销售的关系如下表:
(1)设销售单价比每个进价多x元,用含x的代数式表示日销售量.
(2)若要使日均毛利润达到1840元(毛利润=总售价﹣总进价﹣固定成本),且尽可能多的提升日销售量,则销售单价应定为多少元?
18、(10分)某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出消费金额的中位数;
(3)该班这一天平均每人消费多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在▱ABCD中,∠BAD的平分线AE把边BC分成5和6两部分,则▱ABCD的周长为_____.
20、(4分)等腰三角形的一个内角是30°,则另两个角的度数分别为___.
21、(4分)在▱ABCD中,如果∠A+∠C=140°,那么∠B= 度.
22、(4分)如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为_____.
23、(4分)比较大小:_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(,),AB=1,AD=1.
(1)直接写出B、C、D三点的坐标;
(1)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数()的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.
25、(10分)如图,在平面直角坐标系中,已知A(-3,-4),B(0,-2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;
(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.
26、(12分)解方程:3(x﹣7)=4x(x﹣7)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
依题意分别用和去代换原分式中的和,利用分式的基本性质化简即可.
【详解】
解:分别用和去代换原分式中的和,
原式,
可见新分式是原分式的.
故选:C.
解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
2、C
【解析】
根据二次根式的性质即可求出答案.
【详解】
原式=3,
故选:C.
本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
3、C
【解析】
根据加权平均数的公式进行计算即可得.
【详解】
=1.13(吨),
所以这100户平均节约用水的吨数为1.13吨,
故选C.
本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解题的关键.
4、D
【解析】
先设等边三角形的边长为1个单位长度,再根据等边三角形的性质确定各线段取最小值时x的取值,再结合函数图像得到结论.
【详解】
设等边三角形的边长为1,则0≤x≤1,
如图1,分别过点E,C,D作垂线,垂足分别为F,G,H,
∵点E、D分别是AC,BC边的中点,根据等边三角形的性质可得,
当x=时,线段PE有最小值;
当x=时,线段PC有最小值;
当x=时,线段PD有最小值;
又DE是△ABC的中位线为定值,
由图2可知,当x=时,函数有最小值,故这条线段为PE,
故选D.
此题主要考查函数图像,解题的关键是熟知等边三角形、三角形中位线的性质.
5、B
【解析】
首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.
【详解】
把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y轴,
∴C(1,k),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD= (-)×1,
又∵△OAC与△ABD的面积之和为,
∴(k-1)×1+ (-)×1=,解得:k=3;
故答案为B.
:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.
6、A
【解析】
【分析】根据平移的规律即可得到平移后函数解析式.
【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x2-1+2,即y=2x2+1;
故选A
【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.
7、C
【解析】
利用因式分解法即可将原方程变为x(x-1)=0,即可得x=0或x-1=0,则求得原方程的根.
【详解】
解:∵x1=1x,
∴x1-1x=0,
∴x(x-1)=0,
∴x=0或x-1=0,
∴一元二次方程x1=1x的根x1=0,x1=1.
故选C.
此题考查了因式分解法解一元二次方程.熟练掌握一元二次方程的解法是解题关键.
8、C
【解析】
试题解析:∵在反比例函数y=中,k>0,
∴在同一象限内y随x的增大而减小,
∵a-1<a+1,y1<y2
∴这两个点不会在同一象限,
∴a-1<0<a+1,解得-1<a<1
故选C.
【点睛】本题考察了反比例函数的性质,解题的关键是熟悉反比例函数的增减性,当k>0,在每一象限内y随x的增大而减小;当k<0,在每一象限内y随x的增大而增大.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3×()1
【解析】
根据含30度的直角三角形三边的关系得OA2=OC2=3×;
OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到
OA2018=3×()1.
【详解】
∵∠A2OC2=30°,OA1=OC2=3,
∴;
∵,
∴;
∵,
∴,
∴,
而2018=4×504+2,
∴点A2018在y轴的正半轴上,
∴点A2018的纵坐标为:.
故答案为:.
本题考查的知识点是规律型和点的坐标,解题关键是利用发现的规律进行解答.
10、到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.
【解析】
分析:根据线段垂直平分线的作法即可得出结论.
详解:如图,
∵由作图可知,AC=BC=AD=BD,
∴直线CD就是线段AB的垂直平分线.
故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.
点睛:本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.
11、
【解析】
先通分,使等式两边分母一样,然后是使分子相等,可以求出结果。
【详解】
3x-2=3x+3+m
m=-5
故答案为:-5
此题考查分式的化简求值,掌握运算法则是解题关键
12、2
【解析】
解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.
点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.
13、y=3x+1
【解析】
根据题意可知,弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系,可设y=kx+1.代入求解.
【详解】
弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为y=3x+1,
故答案为y=3x+1
此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
三、解答题(本大题共5个小题,共48分)
14、(1)(-,0);(0,1);(2)y=x+1或y=-x+1.
【解析】
试题分析:(1)根据坐标轴上点的坐标特征确定A点和B点坐标;
(2)由OA=,OP=2OA得到OP=1,分类讨论:当点P在x轴正半轴上时,则P点坐标为(1,0);当点P在x轴负半轴上时,则P点坐标为(-1,0),然后根据待定系数法求两种情况下的直线解析式.
试题解析:(1)把x=0代入y=2x+1,得y═1,
则B点坐标为(0,1);
把y=0代入y=2x+1,得0=2x+1,
解得x=-,
则A点坐标为(-,0);
(2)∵OA=,
∴OP=2OA=1,
当点P在x轴正半轴上时,则P点坐标为(1,0),
设直线BP的解析式为:y=kx+b,
把P(1,0),B(0,1)代入得
解得:
∴直线BP的解析式为:y=-x+1;
当点P在x轴负半轴上时,则P点坐标为(-1,0),
设直线BP的解析式为y=kx+b,
把P(-1,0),B(0,1)代入得
解得:k=1,b=1
所以直线BP的解析式为:y=x+1;
综上所述,直线BP的解析式为y=x+1或y=-x+1.
考点:1.一次函数图象上点的坐标特征;2.待定系数法求一次函数解析式.
15、(1);(2).
【解析】
(1)首先分解因式,再用十字相乘法计算;
(2)首先转化形式,然后直接采用平方差公式计算.
【详解】
原方程可转化为:
原方程可转化为:
此题主要考查一元二次方程的解法,熟练运用,即可解题.
16、(1)36,72;(2)①证明见解析;②CD=AN+CE,证明见解析.
【解析】
(1)根据题意可得△ABC,△BCD,△ABD都是等腰三角形,根据等腰三角形的性质可得∠A=∠DBA=∠DBC=∠ABC=∠C,然后利用三角形的内角和即可得解;
(2)①通过“角边角”证明△BNH≌△BEH,可得BN=BE,即可得证;
②根据题意可得AN=AB﹣BN=AC﹣BE,CE=BE﹣BC,CD=AC﹣AD=AC﹣BD=AC﹣BC,则可得CD=AN+CE.
【详解】
解:(1)∵BD=BC,
∴∠BDC=∠C,
∵AB=AC,
∴∠ABC=∠C,
∴∠A=∠DBC,
∵AD=BD,
∴∠A=∠DBA,
∴∠A=∠DBA=∠DBC=∠ABC=∠C,
∵∠A+∠ABC+∠C=5∠A=180°,
∴∠A=36°,∠C=72°;
故答案为36,72;
(2)①∵∠A=∠ABD=36°,∠B=∠C=72°,
∴∠ABD=∠CBD=36°,
∵BH⊥EN,
∴∠BHN=∠EHB=90°,
在△BNH与△BEH中,
,
∴△BNH≌△BEH(ASA),
∴BN=BE,
∴△BNE是等腰三角形;
②CD=AN+CE,理由:由①知,BN=BE,
∵AB=AC,
∴AN=AB﹣BN=AC﹣BE,
∵CE=BE﹣BC,
∴AN+BE=AC﹣BC,
∵CD=AC﹣AD=AC﹣BD=AC﹣BC,
∴CD=AN+CE.
本题主要考查等腰三角形的判定与性质,全等三角形的判定与性质.解此题的关键在于熟练掌握其知识点.
17、 (1)﹣40x+600;(2)销售单价应定为10元.
【解析】
(1)由表得出销售单价每增加1元时,其销售量减少40件,据此知其销售量为560-40(x+3-4)=-40x+600;
(2)根据“毛利润=总售价-总进价-固定成本”列出方程,解之求得x的值,再根据尽可能多的提升日销售量确定销售单价.
【详解】
解:(1)由表格可知,销售单价每增加1元时,其销售量减少40件,
根据题意知,其销售量为560﹣40(x+3﹣4)=﹣40x+600;
(2)根据题意,得:(﹣40x+600)x﹣400=1840,
整理,得:x2﹣15x+56=0,
解得:x1=7,x2=8,
因为要尽可能多的提升日销售量,
所以x=7,此时销售单价为10元,
答:销售单价应定为10元.
本题考查的是一元二次方程运用,熟练掌握一元二次方程是解题的关键.
18、(1)50;(2)图详见解析,12.5;(3)该班这一天平均每人消费13.1元.
【解析】
(1)根据C类有14人,占28%,即可求得该班的总人数;(2)根据(1)中的答案可以求得消费10元的人数,从而可以将条形统计图补充完整,进而求得消费金额的中位数;(3)根据加权平均数的计算方法可以求得该班这一天平均每人消费的金额.
【详解】
(1)由题意可得,
该班的总人数为:14÷28%=50,
即该班的总人数是50;
(2)消费10元的有:50-9-14-7-4=16(人),
补充完整的统计图如图所示,
消费金额的中位数是:=12.5;
(3)由题意可得,
该班这一天平均每人消费:=13.1(元),
即该班这一天平均每人消费13.1元.
本题考查条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、32或1
【解析】
根据平行四边形的性质可得∠DAE=∠AEB,再由角平分线的性质和等腰三角形的性质可得AB=BE,然后再分两种情况计算即可.
【详解】
解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,BC=BE+EC,
①当BE=5,EC=6时,平行四边形ABCD的周长为:2(AB+BC)=2×(5+5+6)=32;
②当BE=6,EC=5时,平行四边形ABCD的周长为:2(AB+BC)=2×(6+6+5)=1.
故答案为32或1.
平行四边形的性质及等腰三角形的性质、角平分线的性质是本题的考点,根据其性质求得AB=BE是解题的关键.
20、75°、75°或30°、120°.
【解析】
分为两种情况讨论,①30°是顶角;②30°是底角;结合三角形内角和定理计算即可
【详解】
①30°是顶角,则底角= (180°﹣30°)=75°;
②30°是底角,则顶角=180°﹣30°×2=120°.
∴另两个角的度数分别是75°、75°或30°、120°.
故答案是75°、75°或30°、120°.
此题考查等腰三角形的性质,难度不大
21、1.
【解析】
根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.
解:∵平行四边形ABCD,
∴∠A+∠B=180°,∠A=∠C,
∵∠A+∠C=140°,
∴∠A=∠C=70°,
∴∠B=1°.
故答案为1.
22、2
【解析】
设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.
【详解】
解:设AC与BD的交点为O
∵四边形ABCD是平行四边形
∴AD=BC=2,AD∥BC
AO=CO=1,BO=DO
∵AC⊥BC
∴BO==
∴BD=2.
故答案为2.
本题考查了平行四边形的性质和勾股定理,关键是灵活运用平行四边形的性质解决问题.
23、<
【解析】
先算−、-的倒数值,再比较−、-的值,判断即可.
【详解】
∵,
,
∵+2>+2,
∴-<-,
故答案为<.
本题考查了实数大小比较法则,任意两个实数都可以比较大小.根据两正数比较倒数大的反而小得出是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(2)B(,),C(,),D(,);(2)m=4,.
【解析】
试题分析:(2)由矩形的性质即可得出结论;
(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(,),C(,),由点A′,C′在反比例函数()的图象上,得到方程,即可求得结果.
试题解析:(2)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=2,∵A(,),AD∥x轴,∴B(,),C(,),D(,);
(2)∵将矩形ABCD向右平移m个单位,∴A′(,),C(,),∵点A′,C′在反比例函数()的图象上,∴,解得:m=4,∴A′(2,),∴,∴矩形ABCD的平移距离m=4,反比例函数的解析式为:.
考点:2.反比例函数综合题;2.坐标与图形变化-平移.
25、(1)画图见解析,A1(3,4),B1(0,2);(2)以A、B、A1、B1为顶点的四边形为平行四边形,理由见解析.
【解析】
(1)延长AO至A1,A1O=AO, 延长BO至B1,B1O=AO,顺次连接A1B1O,再根据关于原点对称的点的坐标关系,写出A1,B1的坐标.(2)由两组对边相等,可知四边形是平行四边形.
【详解】
解:(1)如图图所示,△OA1B1即为所求,
A1(3,4)、B1(0,2);
(2)由图可知,OB=OB1=2、OA=OA1==5,
∴四边形ABA1B1是平行四边形.
本题考核知识点:图形旋转,中心对称和点的坐标,平行四边形判定. 解题关键点:熟记关于原点对称的点的坐标关系,掌握平行四边形的判定定理.
26、x1=,x2=1.
【解析】
整体移项后,利用分解因式法进行求解即可.
【详解】
移项,得3(x-1)-4x(x-1)=0,
因式分解,得 (3-4x) (x-1)=0,
由此得3-4x=0或x-1=0,
解得x1=,x2=1.
本题考查了解一元二次方程——因式分解法,根据一元二次方程的特点灵活选用恰当的方法进行求解是关键.
题号
一
二
三
四
五
总分
得分
每户节水量(单位:吨)
1
1.2
1.5
节水户数
65
15
20
销售单价(元)
4
5
6
7
8
9
10
日平均销售量(瓶)
560
520
480
440
400
360
320
广东省东莞市中学堂镇六校2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份广东省东莞市中学堂镇六校2023-2024学年九上数学期末质量跟踪监视试题含答案,共6页。试卷主要包含了下列图形等内容,欢迎下载使用。
2023-2024学年广东省东莞市中学堂六校九上数学期末预测试题含答案: 这是一份2023-2024学年广东省东莞市中学堂六校九上数学期末预测试题含答案,共7页。
广东省东莞市中学堂六校2023-2024学年八上数学期末考试模拟试题含答案: 这是一份广东省东莞市中学堂六校2023-2024学年八上数学期末考试模拟试题含答案,共7页。试卷主要包含了已知,则与的关系是,对于,,,,,,其中分式有,下列计算中正确的是等内容,欢迎下载使用。