2024年广东省深圳市龙岗区大鹏新区华侨中学数学九上开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小亮在同一直角坐标系内作出了和的图象,方程组的解是( )
A.B.C.D.
2、(4分)如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是( )
A.0.72B.2.0C.1.125D.不能确定
3、(4分)如图,四边形和四边形都是正方形,边在轴上,边在轴上,点在边上,反比例函数,在第二象限的图像经过点,则正方形与正方形的面积之差为( )
A.6B.8C.10D.12
4、(4分)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①②B.②③C.①③D.②④
5、(4分)已知二次根式的值为3,那么的值是( )
A.3B.9C.-3D.3或-3
6、(4分)某篮球队 10 名队员的年龄结构如下表:
已知该队队员年龄的中位数为 21.5,则众数是( )
A.21 岁B.22 岁C.23 岁D.24 岁
7、(4分)在直角坐标系中,点P(-3,3)到原点的距离是( )
A. B.3C. 3D.6
8、(4分)下列计算正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形中,,,点是边上一点,若平分,则的面积为________.
10、(4分)在矩形ABCD中,再增加条件_____(只需填一个)可使矩形ABCD成为正方形.
11、(4分)某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.
12、(4分)如图,在平面直角坐标系中,点,过点作的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交轴于点……按此规律继续作下去,直至得到点为止,则点的坐标为_________.
13、(4分)已知点P(a+3,7+a)位于二、四象限的角平分线上,则点P的坐标为_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解分式方程:﹣1=.
15、(8分)有下列命题
①一组对边平行,一组对角相等的四边形是平行四边形.
②两组对角分别相等的四边形是平行四边形.
③一组对边相等,一组对角相等的四边形是平行四边形.
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
(1)上述四个命题中,是真命题的是 (填写序号);
(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
已知: .
求证: .
证明:
16、(8分)如图,在中,,是的垂直平分线.求证:是等腰三角形.
17、(10分)如图,、是的对角线上的两点,且,,连接、、、.
(1)求证:四边形为平行四边形;
(2)若,,求的长.
18、(10分)如图,△ABC是等边三角形.
(1)利用直尺和圆规按要求完成作图(保留作图痕迹);
①作线段AC的中点M.
②连接BM,并延长到D,使MD=MB,连接AD,CD.
(2)求证(1)中所作的四边形ABCD是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的两条对角线AC,四交于点O,若,,则菱形ABCD的周长为________。
20、(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.
21、(4分)如图,四边形是一块正方形场地,小华和小芳在边上取定一点,测量知,,这块场地的对角线长是________.
22、(4分)如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为_____.
23、(4分)如图,平行四边形的周长为,对角线交于点,点是边的中点,已知,则______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,AE是∠BAC的角平分线,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD.
25、(10分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.
(1)求证:四边形ADCE是平行四边形;
(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.
26、(12分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由数形结合可得,直线和的交点即为方程组
的解,可得答案.
【详解】
解:由题意得:直线和的交点即为方程组
的解,可得图像上两直线的交点为(-2,2),
故方程组的解为,
故选B.
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
2、A
【解析】
先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.
【详解】
∵AB=1.5,BC=0.9,AC=1.2,
∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,
∴AB2=BC2+AC2,
∴∠ACB=90°,
∵CD是AB边上的高,
∴S△ABC=AB·CD=AC·BC,
1.5CD=1.2×0.9,
CD=0.72,
故选A.
该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.
3、B
【解析】
设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),根据E在反比例函数上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面积之差.
【详解】
设正方形AOBC的边长为a,正方形CDEF的边长为b,
则E(a-b,a+b),
∵E在反比例函数上
∴(a+b)(a-b)=8,即a2 -b2=8
∴S正方形AOBC-S正方形CDEF=a2-b2=8
故选B.
此题主要考查反比例函数的图像,解题的关键是根据题意找到E点坐标.
4、B
【解析】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选C.
5、D
【解析】
试题分析:∵,∴.故选D.
考点:二次根式的性质.
6、A
【解析】
先根据数据的总个数及中位数得出、,再利用众数的定义求解可得.
【详解】
共有10个数据,
,
又该队队员年龄的中位数为,即,
,
、,
则这组数据的众数为.
故选:.
本题主要考查了中位数、众数,解题的关键是根据中位数的定义得出、的值.
7、B
【解析】
根据勾股定理可求点P(-3,3)到原点的距离.
【详解】
解:点P(-3,3)到原点的距离为=3,
故选:B.
本题考查勾股定理,熟练掌握勾股定理是解题的关键.
8、A
【解析】
利用二次根式的性质对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.
【详解】
解:A、原式=4a2,所以A选项的计算正确;
B、原式==5a,所以B选项的计算错误;
C、原式=+=2,所以C选项的计算错误;
D、与不能合并,所以D选项的计算错误.
故选:A.
本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC=5,CD=AB=3,
∴∠CED=∠ADE,
∵ED平分∠AEC,
∴∠AED=∠CED,
∴∠EDA=∠AED,
∴AD=AE=5,
∴BE=,
∴△ABE的面积=BE•AB=×4×3=1;
故答案为:1.
本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.
10、AB=BC
【解析】
分析:根据领边相等的矩形是正方形,即可判定四边形ABCD是正方形.
详解:∵ AB=BC,
∴ 矩形ABCD是正方形.
故答案为AB=BC
点睛:本题考查了正方形的判定方法,熟练掌握正方形的判定方法是解题的关键.
11、10
【解析】
根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.
【详解】
解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),
设该一次函数的解析式为y=kx+b,
则有:,
解得:,
∴y=x+1.
将x=11代入一次函数解析式,
故出租车费为10元.
故答案为:10.
此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.
12、
【解析】
分别写出、、的坐标找到变化规律后写出答案即可.
【详解】
解:、,
,
的坐标为:,
同理可得:的坐标为:,的坐标为:,
,
点横坐标为,即:,
点坐标为,,
故答案为:,.
本题考查了规律型问题,解题的关键是根据点的坐标的变化得到规律,利用得到的规律解题.
13、 (-2,2)
【解析】
根据二、四象限的角平分线上点的坐标特征得到a+3+7+a=0,然后解方程求出a的值,代入即可得出结论.
【详解】
根据题意得:a+3+7+a=0,解得:a=﹣5,∴a+3=-2,7+a=2,∴P(-2,2).
故答案为:(-2,2).
本题考查了点的坐标.掌握二、四象限的角平分线上点的坐标特征是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、分式方程的解为x=1.1.
【解析】
根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.
【详解】
两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,
解得:x=1.1,
检验:x=1.1时,3(x﹣1)=1.1≠0,
所以分式方程的解为x=1.1.
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
15、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形
【解析】
(1)根据平行线的判定定理写出真命题;
(2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.
【详解】
(1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;
②两组对角分别相等的四边形是平行四边形.故正确;
③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.
故答案是:①②④;
(2)以②为例:
已知:在四边形ABCD中,∠A=∠C,∠B=∠D,
求证:四边形ABCD是平行四边形.
证明:∵∠1+∠2=180°﹣∠A,∠2+∠1=180°﹣∠C,∠A=∠C,
∴∠1+∠2=∠2+∠1.①
∵∠ABC=∠ADC,
即∠1+∠2=∠2+∠1,②
由①②相加、相减得:∠1=∠1,∠2=∠2.
∴AB∥CD,AD∥BC.
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
故答案是:在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形.
本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.
16、见解析
【解析】
先由AB=AC,∠A=36°,可求∠B=∠ACB= =72°,然后由DE是AC的垂直平分线,可得AD=DC,进而可得∠ACD=∠A=36°,然后根据外角的性质可求:∠CDB=∠ACD+∠A=72°,根据等角对等边可得:CD=CB,进而可证△BCD是等腰三角形;
【详解】
证明:,
.
是的垂直平分线,
.
.
是的外角,
.
,
是等腰三角形.
本题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.
17、(1)证明见解析 (2)
【解析】
(1)根据平行四边形的性质,证明,即可解答.
(2)由(1)得到,,再利用勾股定理即可解答.
【详解】
(1)证明:
∵,,
∴.
∴.
在中,,,
∴.
∴.
∴.
∴四边形是平行四边形.
(2)∵四边形是平行四边形,
∴,.
在中,
.
∴.
此题考查平行四边形的判定与性质,勾股定理,解题关键在于判定三角形全等.
18、(1)①见解析;②见解析;(2)见解析
【解析】
(1)根据要求画出图形即可.
(2)根据对角线垂直的四边形是菱形即可判断.
【详解】
(1)解:如图,四边形ABCD即为所求.
(2)证明:∵AM=MC,BM=MD,
∴四边形ABCD是平行四边形,
∵△ABC是等边三角形,AM=MC,
∴BD⊥AC,
∴四边形ABCD是菱形.
本题考查作图——复杂作图,线段的垂直平分线的性质,菱形的判定,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先根据菱形的性质可知菱形的对角线垂直平分,然后在Rt△AOD中利用勾股定理求出AD的长,再由菱形的四边形相等,可得菱形ABCD的周长.
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,AO=AC=3,DO=BD=2,
在Rt△AOD中,AD=,
∴菱形ABCD的周长为4.
故答案为:4.
本题考查了菱形的性质以及勾股定理的知识,解答本题的关键是掌握菱形的对角线互相垂直且平分以及勾股定理等知识.
20、n2+2n
【解析】
试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.
解:第n个图形需要黑色棋子的个数是n2+2n.
故答案为:n2+2n.
21、40m
【解析】
先根据勾股定理求出BC,故可得到正方形对角线的长度.
【详解】
∵,
∴,
∴对角线AC=.
故答案为:40m.
此题主要考查利用勾股定理解直角三角形,解题的关键是熟知勾股定理的运用.
22、20
【解析】
设AB=CD=a,AD=BC=b,根据三角形的面积依次求出BE,EC,CF,DF的长度,再根据△ADF面积为5,可列方程,可求ab的值,即可得矩形ABCD的面积.
【详解】
设AB=CD=a,AD=BC=b
∵S△ABE=6
∴AB×BE=6
∴BE=
∴EC=b﹣
∵S△EFC=2
∴EC×CF=2
∴CF=
∴DF=a﹣
∵S△ADF=5
∴AD×DF=5
∴b(a﹣)=10
∴(ab)2﹣26ab+120=0
∴ab=20或ab=6(不合题意舍去)
∴矩形ABCD的面积为20
故答案为20
此题考查了面积与等积变换的知识以及直角三角形与矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.
23、1
【解析】
根据平行四边形的性质求出AD的长,再根据中位线的性质即可求出OE的长.
【详解】
解:∵,
∵,
∴.
∵为的中点,
∴为的中位线,
∴.
故答案为:1.
此题主要考查平行四边形与中位线的性质,解题的关键是熟知平行四边形的对边相等.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
求出EC=EB,∠ECA=∠EBA=90°,∠CAE=∠BAE,根据AAS推出△CAE≌△BAE,根据全等三角形的性质得出AC=AB,根据SAS推出△CAD≌△BAD即可.
【详解】
证明:∵AE是∠BAC的角平分线,EB⊥AB,EC⊥AC,
∴EC=EB,∠ECA=∠EBA=90°,∠CAE=∠BAE,
在△CAE和△BAE中
,
∴△CAE≌△BAE,
∴AC=AB,
在△CAD和△BAD中
,
∴△CAD≌△BAD,
∴BD=CD.
考查了全等三角形的性质和判定的应用,注意:全等是三角形的对应边相等,对应角相等.
25、见解析
【解析】
试题分析:
(1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;
(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.
试题解析:
(1)∵AE∥BC,
∴∠AEF=∠DBF,∠EAF=∠FDB,
∵点F是AD的中点,
∴AF=DF,
∴△AFE≌△DFB,
∴ AE=CD,
∵AD是△ABC的中线,
∴DC=AD,
∴AE=DC,
又∵AE∥BC,
∴四边形 ADCE是平行四边形;
(2)∵BE平分∠AEC,
∴∠AEB=∠CEB,
∵AE∥BC,
∴∠AEB=∠EBC,
∴∠CEB=∠EBC,
∴EC=BC,
∵由(1)可知,AD=EC,BD=DC=AE,
∴AD=BC,
又∵AF=DF,
∴AF=DF=BD=DC=AE,
即图中等于AE的线段有4条,分别是:AF、DF、BD、DC.
26、答案见解析
【解析】
试题分析:(2)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;
(2)分0<x≤2和x>2两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.
试题解析:(2)由题意知:
当0<x≤2时,y甲=22x;当2<x时,y甲=22+25(x﹣2)=25x+2.y乙=26x+3;
∴,;
(2)①当0<x≤2时,令y甲<y乙,即22x<26x+3,解得:0<x<;
令y甲=y乙,即22x=26x+3,解得:x=;
令y甲>y乙,即22x>26x+3,解得:<x≤2.
②x>2时,令y甲<y乙,即25x+2<26x+3,解得:x>3;
令y甲=y乙,即25x+2=26x+3,解得:x=3;
令y甲>y乙,即25x+2>26x+3,解得:0<x<3.
综上可知:当<x<3时,选乙快递公司省钱;当x=3或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>3时,选甲快递公司省钱.
考点:一次函数的应用;分段函数;方案型.
题号
一
二
三
四
五
总分
得分
批阅人
年龄/岁
19
20
21
22
24
26
人数
1
1
x
y
2
1
2023-2024学年广东省深圳市龙岗区大鹏新区华侨中学数学九年级第一学期期末质量检测试题含答案: 这是一份2023-2024学年广东省深圳市龙岗区大鹏新区华侨中学数学九年级第一学期期末质量检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2023-2024学年广东省深圳市龙岗区大鹏新区华侨中学八年级数学第一学期期末监测试题含答案: 这是一份2023-2024学年广东省深圳市龙岗区大鹏新区华侨中学八年级数学第一学期期末监测试题含答案,共6页。试卷主要包含了已知,,那么的值是,如图,不是轴对称图形的是等内容,欢迎下载使用。
广东省深圳市龙岗区大鹏新区华侨中学2022-2023学年七年级数学第二学期期末检测试题含答案: 这是一份广东省深圳市龙岗区大鹏新区华侨中学2022-2023学年七年级数学第二学期期末检测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,已知点的坐标为,则点在第象限,在平面直角坐标中,点P等内容,欢迎下载使用。