2024年广东省云浮市云安区数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图①,,点在线段上,且满足.如图②,以图①中的,长为边建构矩形,以长为边建构正方形,则矩形的面积为( )
A.B.C.D.
2、(4分)下列命题中,为假命题的是( )
A.两组邻边分别相等的四边形是菱形B.对角线互相垂直平分的四边形是菱形
C.四个角相等的四边形是矩形D.对角线相等的平行四边形是矩形
3、(4分)如图,一根木棍斜靠在与地面OM垂直的墙面ON上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到墙角点O的距离( )
A.不变B.变小C.变大D.先变大后变小
4、(4分)若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a-b+c的值是( )
A.-1B.1C.0D.不能确定
5、(4分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )
A.ab>0B.a﹣b>0C.a2+b>0D.a+b>0
6、(4分)一次函数y=—2x+3的图象与两坐标轴的交点是( )
A.(3,1)(1,);B.(1,3)(,1);C.(3,0)(0,) ;D.(0,3)(,0)
7、(4分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有( )
A.1个B.2个C.3个D.4个
8、(4分)如图,E为边长为 2 的正方形 ABCD的对角线上一点,BE=BC,P为 CE上任意一点,PQ⊥BC于点 Q,PR⊥BE于 R,则 PQ+PR的值为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.
10、(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).
11、(4分)如图,在菱形中,过点作交对角线于点,且,则_____.
12、(4分)计算: =_____.
13、(4分)已知,,,若,则可以取的值为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
15、(8分)2019 年 7 月 1 日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、 “有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:
信息 1:一个垃圾分类桶的售价比进价高 12 元;
信息 2:卖 3 个垃圾分类桶的费用可进货该垃圾分类桶 4 个;
请根据以上信息,解答下列问题:
(1)该商品的进价和售价各多少元?
(2)商店平均每天卖出垃圾分类桶 16 个.经调查发现,若销售单价每降低 1 元,每天可多售出 2 个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?
16、(8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有__________名学生参加;
(2)直接写出表中:_______________________
(3)请补全右面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.
17、(10分)如图,平行四边形中,对角线和相交于点,且
(1)求证:;
(2)若,求的长.
18、(10分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数的图象经过原点,函数的图象经与y轴交于点(0,5),即它可以看作直线向上平移5个单位长度而得到。比较一次函数解析式与正比例函数解析式,容易得出:一次函数的图象可由直线通过向上(或向下)平移个单位得到(当b>0时,向上平移,当b<0时,向下平移)。
(结论应用)一次函数的图象可以看作正比例函数 的图象向 平移 个单位长度得到;
(类比思考)如果将直线的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线上任意取两点A(0,0)和B(1,),将点A(0,0)和B(1,)向右平移5个单位得到点C(5,0)和D(6,),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:,将C(5,0)和D(6,)代入得到:解得,所以直线CD的解析式为:;①将直线向左平移5个单位长度,则平移后得到的直线解析式为 .②若先将直线向左平移4个单位长度后,再向上平移5个单位长度,得到直线,则直线的解析式为: .
(拓展应用)已知直线:与直线关于x轴对称,求直线的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为 .
20、(4分)分解因式:2x2-8x+8=__________.
21、(4分)如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.
22、(4分)如图,已知直线、相交于点,平分,如果,那么__________度.
23、(4分)如图,菱形的对角线、相交于点,过点作直线分别与、相交于、两点,若,,则图中阴影部分的面积等于______.
二、解答题(本大题共3个小题,共30分)
24、(8分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.
(1)求销售量y与定价x之间的函数关系式;
(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.
25、(10分)如图,在矩形中,、分别是、的中点,、分别是、的中点.
求证:;
四边形是什么样的特殊四边形?请说明理由.
26、(12分)解方程
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用黄金比进行计算即可.
【详解】
解:由得,
AC=AB=×2=-1,BC=AB=×2=3-,
因为四边形CBDE为正方形,所以EC=BC,
AE=AC-CE=AC-BC=(-1)-(3-)=2-4,
矩形AEDF的面积:AE•DE=(2-4)×(3-)=10-1.
故选C.
本题考查黄金分割的意义,熟练利用黄金比计算是解题的关键.
2、A
【解析】
根据特殊的平行四边形的判定即可逐一判断.
【详解】
解:两组邻边分别相等的四边形不一定是菱形,如AB=AD,CB=CD,但AB≠CB的四边形,故选项A中的命题是假命题,故选项A符合题意;
对角线互相垂直平分的四边形是菱形是真命题,故选项B不符合题意;
四个角相等的四边形是矩形是真命题,故选项C不符合题意;
对角线相等的平行四边形是矩形是真命题,故选项D不符合题意;
故选:A.
本题考查命题与定理,解答本题的关键是明确题意,熟练掌握特殊的平行四边形的判定定理,会判断命题的真假.
3、A
【解析】
连接OP,易知OP就是斜边AB上的中线,由于直角三角形斜边上的中线等于斜边的一半,那么OPAB,由于AB不变,那么OP也就不变.
【详解】
不变.连接OP.在Rt△AOB中,OP是斜边AB上的中线,那么OPAB,由于木棍的长度不变,所以不管木棍如何滑动,OP都是一个定值.
故选A.
本题考查了直角三角形斜边上的中线,解题的关键是知道木棍AB的长度不变,也就是斜边不变.
4、C
【解析】
将x=-1代入方程,就可求出a-b+c的值.
【详解】
解:将x=-1代入方程得, a-b+c=0
故答案为:C
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
5、C
【解析】
解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,,故C正确,a+b不一定大于0,故D错误.故选C.
6、D
【解析】
y=—2x+3与横轴的交点为(,0),与纵轴的交点为(0,3),故选D
7、D
【解析】
根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,DH=,CD=6x,根据三角形面积公式即可判断④.
【详解】
①∵四边形ABCD为正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;
③∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),故③正确;
④∵AE:AB=2:3,
∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
过H点作HM垂直于CD于M点,如图所示:
设HM=x,则DM=5x,DH==,CD=6x,
则S△DHC=×CD×HM=3x2,S△EDH=×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确,
所以正确的有4个,
故选D.
本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
8、B
【解析】
连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.
【详解】
解:如图,连接BP,设点C到BE的距离为h,
则S△BCE=S△BCP+S△BEP,
即BE•h=BC•PQ+BE•PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的边长为2,
∴h=2×.
故选B.
本题考查了正方形的性质,三角形的面积,熟记性质并作辅助线,利用三角形的面积求出PQ+PR等于点C到BE的距离是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先求出体育优秀的占总体的百分比,再乘以360°即可.
【详解】
解:圆心角的度数是:
故答案为:1.
本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
10、AC⊥BC或∠AOB=90°或AB=BC(填一个即可).
【解析】
试题分析:根据菱形的判定定理,已知平行四边形ABCD,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.
考点:菱形的判定.
11、
【解析】
根据菱形的性质与三角形的外角定理即可求解.
【详解】
∵四边形ABCD是菱形,故∠DBC=∠BDC,
∵,∴∠BDC=∠ECD,
∴∠BEC=∠BDC+∠ECD=2∠BDC=2∠DBC
∵
∴∠DBC+∠BEC=3∠DBC=90°,得∠DBC=30°,
故∠BEC=90°-∠DBC=60°,
故填60°.
此题主要考查菱形的性质,解题的关键是熟知菱形的性质、等腰三角形的性质、三角形的外角定理.
12、
【解析】
=
13、
【解析】
通过画一次函数的图象,从图象观察进行解答,根据当时函数的图象在的图象的上方进行解答即可.
【详解】
如下图由函数的图象可知,当时函数的图象在的图象的上方,即.
故答案为:.
本题考查的是一次函数的图象,利用数形结合进行解答是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
【解析】
设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
【详解】
解:设该地投入异地安置资金的年平均增长率为x.
根据题意得:1280(1+x)2=1280+1600.
解得x1=0.5=50%,x2=-2.5(舍去),
答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.
15、(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.
【解析】
(1)根据题意,设一个垃圾分类桶的进价为x元,则售价为(x+12)元,列出方程,解方程即可得到答案;
(2)根据题意,可设每天获利为w,当垃圾分类桶的售价为y元时,每天获利w最大,然后列出方程,解出方程即可得到答案.
【详解】
解:(1)设一个垃圾分类桶的进价为x元,则售价为(x+12)元,则
,解得:,
∴售价为:36+12=48元.
答:一个垃圾分类桶的进价为36元,售价为48元;
(2)设每天获利为w,当一个垃圾分类桶的售价为y元时,每天获利最大,则
,
整理得:;
∴当 时,商店每天获利最大,最大利润为:200元.
该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.
16、解:(1)50;(2)20,0.24;(3)见详解;(4)52%.
【解析】
(1)用第二组的频数除以它所占的频率得到调查的总人数;
(2)用第四组的频率乘以样本容量得到a的值,用第三组的频数除以样本容量得到b的值;
(3)利用a的值补全频数分布直方图;
(4)用第四组和第五组的频数和除以样本容量即可.
【详解】
解:解:(1)10÷0.2=50,
所以本次决赛共有50名学生参加;
(2)a=50×0.4=20,b==0.24;
故答案为50;20;0.24;
(3)补全频数分布直方图为:
(4)本次大赛的优秀率=×100%=52%.
故答案为50;20;0.24;52%.
本题考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、(1)详见解析;(2)
【解析】
(1)先证明AC=BD,再证明平行四边形ABCD是矩形即可得到答案;
(2)证明△AOD为等边三角形,再运用勾股定理求解即可.
【详解】
证明:在平行四边形中,
,
又
,
四边形是矩形
解:四边形是矩形.
,
又
是等边三角形,
,
在中,
本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.
18、【结论应用】y=x,下,1;
【类比思考】①y=-6x-10;②y=-6x-3;
【拓展应用】y=-2x-1.
【解析】
【结论应用】
根据题目材料中给出的结论即可求解;
【类比思考】
①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
【拓展应用】
在直线:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.
【详解】
解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.
故答案为y=x,下,1;
【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),
将C(-5,0)和D(-4,-6)代入得到:
,
解得
,
所以直线CD的解析式为:y=-6x-10.
故答案为y=-6x-10;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(-4,5)和D(-1,-1)代入得到:
解得
所以直线的解析式为:y=-6x-3.
故答案为y=-6x-3;
【拓展应用】在直线:y=2x+1上任意取两点A(0,1)和B(1,5),
则点A和B关于x轴的对称点分别为C(0,-1)或D(1,-5),连接CD,则直线CD就是直线AB关于x轴对称的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(0,-1)或D(1,-5)代入得到:
解得
所以直线关于x轴对称的直线的解析式为y=-2x-1.
本题考查了一次函数图象与几何变换,一次函数与二元一次方程(组),考查了学生的阅读理解能力与知识的迁移能力.理解阅读材料是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.
由图象可知,此时.
20、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
21、5
【解析】
根据勾股定理,可得答案.
【详解】
解: PO==5,
故选: C.
本题考查了点的坐标,利用勾股定理是解题关键.
22、1
【解析】
先根据角平分线的定义,求出∠BOC的度数,再根据邻补角的和等于11°求解即可.
【详解】
解:∵平分,,
∴,
∴,
故答案为:1.
本题考查了角平分线的定义以及邻补角的性质,属于基础题.
23、
【解析】
根据菱形的性质可证≌,可将阴影部分面积转化为△AOB的面积,根据菱形的面积公式计算即可.
【详解】
四边形是菱形
∴OC=OA,AB∥CD,
∴
∴≌(ASA)
∴S△CFO= S△AOE
∴S△CFO+ S△EBO= S△AOB
∴S△AOB=SABCD=×
故答案为:.
此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为三角形AOB的面积为解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=﹣2x+1(2)18元
【解析】
(1)由图象可知y与x是一次函数关系,由函数图象过点(11,10)和(15,2),用待定系数法即可求得y与x的函数关系式.
(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.
【详解】
解:(1)设y=kx+b(k≠0),由图象可知,
,解得
∴销售量y与定价x之间的函数关系式是:y=﹣2x+1.
(2)超市每天销售这种商品所获得的利润是:
W=(﹣2×13+1)(13﹣10)=18
25、(1)证明见解析(2)菱形
【解析】
(1)连接MN,证明四边形AMNB是矩形,得出∠MNB=90°,根据直角三角形斜边上的中线性质即可得出结论;
(2)先证明四边形MPNQ是平行四边形,再由(1)即可得出结论.
【详解】
证明:连接,如图所示:
∵四边形是矩形,
∴,,,
∵、分别是、的中点,
∴,,
∴,
∴四边形是平行四边形,
∴平行四边形是矩形,
∴,
∵是的中点,
∴;四边形是菱形;理由如下:
解:∵,,
∴四边形是平行四边形,
∴,,
又∵、分别是、的中点,
∴,
∴四边形是平行四边形,
由得,
∴四边形时菱形.
本题考查了菱形与矩形的性质,解题的关键是熟练的掌握菱形的判定与矩形的性质.
26、x=2
【解析】
方程两边同时乘以x-1,化为整式方程,解整式方程后进行检验即可得.
【详解】
解:两边同时乘以x-1,得
,
解得:,
检验:当x=2时,x-1≠0,
所以原分式方程的解是.
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
题号
一
二
三
四
五
总分
得分
组别
成绩(分)
频数(人数)
频率
一
2
二
10
0.2
三
12
四
0.4
五
6
2024-2025学年广东省云浮市数学九上开学复习检测试题【含答案】: 这是一份2024-2025学年广东省云浮市数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024-2025学年广东云浮市云安区九年级数学第一学期开学检测试题【含答案】: 这是一份2024-2025学年广东云浮市云安区九年级数学第一学期开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东云浮市云安区2023-2024学年数学九上期末监测模拟试题含答案: 这是一份广东云浮市云安区2023-2024学年数学九上期末监测模拟试题含答案,共8页。试卷主要包含了已知关于x的一元二次方程x2-,若α为锐角,且,则α等于,下列命题中,为真命题的是,在平面直角坐标系中,点等内容,欢迎下载使用。