![2024年广西柳州市城中区龙城中学数学九年级第一学期开学考试试题【含答案】01](http://www.enxinlong.com/img-preview/2/3/16203319/0-1727588525801/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广西柳州市城中区龙城中学数学九年级第一学期开学考试试题【含答案】02](http://www.enxinlong.com/img-preview/2/3/16203319/0-1727588525898/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广西柳州市城中区龙城中学数学九年级第一学期开学考试试题【含答案】03](http://www.enxinlong.com/img-preview/2/3/16203319/0-1727588525936/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广西柳州市城中区龙城中学数学九年级第一学期开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为( )
A.2B.4C.8D.4
2、(4分)某校在体育健康测试中,有名男生“引体向上”的成绩(单位:次)分别是,,,,,,,,这组数据的中位数和众数分别是( )
A.,B.,C.,D.,
3、(4分)在学校举办的独唱比赛中,10位评委给小丽的平分情况如表所示:
则下列说法正确的是( )
A.中位数是7.5B.中位数是8C.众数是8D.平均数是8
4、(4分)如果小磊将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为( )
A.B.C.D.
5、(4分)当k>0,b<0时,函数y=kx+b的图象大致是( )
A.B.
C.D.
6、(4分)下列各组数是三角形的三边长,能组成直角三角形的一组数是()
A.2,2,3B.4,6,8C.2,3,D.,,
7、(4分)如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于( )
A.6B.8C.14D.28
8、(4分)若二次根式有意义,则x的取值范围是( )
A.x<2B.x≠2C.x≤2D.x≥2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)命题“等腰三角形两底角相等”的逆命题是_______
10、(4分)直线y=kx+b经过点A(-2,0)和y轴的正半轴上一点B.如果△ABO(O为坐标原点)的面积为2,则b的值是________.
11、(4分)若<0,则代数式可化简为_____.
12、(4分)直线与轴的交点坐标是________________.
13、(4分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在□ABCD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.
求证:四边形BEDF是平行四边形.
15、(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?
16、(8分)列方程(组)及不等式(组)解应用题:
水是生命之源.为了鼓励市民节约用水,江夏区水务部门实行居民用水阶梯式计量水价政策;若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,但每立方米污水处理费不变.
下面表格是某居民小区4月份甲、乙两户居民生活用水量及缴纳生活用水水费的情况统计:
4月份居民用水情况统计表
(注:污水处理的立方数=实际生活用水的立方数)
(1)求每立方米的基本水价和每立方米的污水处理费各是多少?
(2)设这个小区某居民用户5月份用水立方米,需要缴纳的生活用水水费为元.若他5月份生活用水水费计划不超过64元,该用户5月份最多可用水多少立方米?
17、(10分)如图,在平面直角坐标系中,的顶点坐标分别是,,.
(1)将平移得到,且的坐标是,画出;
(2)将绕点逆时针旋转得到,画出.
18、(10分)2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.
(1)该商家购进的第一批纪念衫单价是多少元?
(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)菱形的周长是20,一条对角线的长为6,则它的面积为_____.
20、(4分)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____
21、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
22、(4分)已知P1(-4,y1)、P2(1,y2)是一次函数y=-3x+1图象上的两个点,则y1_______y2(填>,<或=)
23、(4分)在中,,,,则斜边上的高为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)DE=BF;
(2)四边形DEBF是平行四边形.
25、(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:
(1)在图①中画一条线段AB,使AB= ;
(2)在图②中画一个以格点为顶点,面积为2的正方形ABCD.
26、(12分)(2011•南京)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中 的折线表示小亮在整个行走过程中y与x的函数关系.
(1)小亮行走的总路程是___________m,他途中休息了_____________min;
(2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.
【详解】
∵四边形ABCD是平行四边形,
∴BC=AD=6,OA=OC,
∵AC⊥BC,AB=10,
∴,
∴,
∴;
故选:A.
本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.
2、B
【解析】
先把原数据按由小到大排列,然后根据中位数和众数的定义求解.
【详解】
解:原数据按由小到大排列为:7,8,9,10,1,1,14,16,
所以这组数据的中位数==11,众数为1.
故选:B.
本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义,由此即可解答.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
3、A
【解析】
分别利用众数、中位数及加权平均数的定义及公式求得答案后即可确定符合题意的选项.
【详解】
∵共10名评委,
∴中位数应该是第5和第6人的平均数,为7分和8分,
∴中位数为:7.5分,
故A正确,B错误;
∵成绩为6分和8分的并列最多,
∴众数为6分和8分,
故C错误;
∵平均成绩为:=8.5分,
故D错误,
故选:A.
本题考查了众数、中位数及加权平均数的知识,解题的关键是能够根据定义及公式正确的求解,难度不大.
4、A
【解析】
解:阴影部分的面积为2+4=6 ∴镖落在阴影部分的概率为=.
考点:几何概率.
5、D
【解析】
由一次函数图象与系数的关系可得,
当k>0,b<0时,函数y=kx+b的图象经过一三四象限.
故选D.
6、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】
解:A、22+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
B、42+62≠82,根据勾股定理的逆定理不是直角三角形,故此选项错误;
C、22+32=(2,根据勾股定理的逆定理是直角三角形,故此选项正确;
D、()2+()2≠()2,根据勾股定理的逆定理不是直角三角形,故此选项错误.
故选:C.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、D
【解析】
首先根据题意求出的长度,然后利用菱形的性质以及勾股定理的知识求出的值,最后结合三角形的面积公式即可求出答案.
【详解】
解:四边形是菱形,
,,
菱形的周长为24,
,
,
,
,
,
,
菱形的面积三角形的面积,
故选D.
本题主要考查了菱形的性质,解题的关键是利用菱形的性质以及勾股定理的知识求出的值.
8、C
【解析】
二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.
【详解】
由题意得:1-x≥0,
解得:x≤1.
故选C.
本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、有两个角相等的三角形是等腰三角形
【解析】
根据逆命题的条件和结论分别是原命题的结论和条件写出即可.
【详解】
∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.
故答案为:有两个角相等的三角形是等腰三角形.
本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.
10、1
【解析】.而|OA|=1,故|OB|=1,又点B在y轴正半轴上,所以b=1.
11、
【解析】
二次根式有意义,就隐含条件b>1,由ab<1,先判断出a、b的符号,再进行化简即可.
【详解】
若ab<1,且代数式有意义;
故有b>1,a<1;
则代数式=|a|=-a.
故答案为:-a.
本题主要考查二次根式的化简方法与运用:当a>1时,=a;当a<1时,=-a;当a=1时,=1.
12、
【解析】
根据一次函数的性质,与轴的交点即横坐标为0,代入即可得解.
【详解】
根据题意,得
当时,,
即与轴的交点坐标是
故答案为.
此题主要考查一次函数的性质,熟练掌握,即可解题.
13、59
【解析】
由题意得,,解得a=59.
故答案为59.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
根据平行四边形性质,先证△ODF≌△OBE,得OF=OE,又 OD=OB,可证四边形BEDF是平行四边形.
【详解】
∵在□ABCD中,AC,BD相交于点O,
∴DC∥AB ,OD=OB.
∴∠FDO=∠EBO,∠DFO=∠BEO.
∴△ODF≌△OBE.
∴OF=OE.
∴四边形BEDF是平行四边形.
本题考核知识点:平行四边形的性质和判定. 解题关键点:熟记平行四边形的性质和判定.
15、(1)该一次函数解析式为y=x+1;(2)离加油站的路程是10千米.
【解析】
(1)分析题意,首先根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,用总路程减去剩余油量为8升时行驶的路程即可解答本题。
【详解】
(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得,
解得:,
∴该一次函数解析式为y=x+1.
(2)当y=x+1=8时,
解得x=2.
即行驶2千米时,油箱中的剩余油量为8升.
530-2=10千米,
油箱中的剩余油量为8升时,距离加油站10千米.
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
本题主要考查的是一次函数的应用,解题的关键是掌握待定系数法.
16、(1)每立方米的基本水价为2.45元;每立方米的污水处理费是1元;(2)该用户5月份最多可用水15立方米.
【解析】
(1)设每立方米的基本水价为元;每立方米的污水处理费是元.根据题意列出方程组即可解答
(2)由(1)可列出不等式,即可解答
【详解】
(1)设每立方米的基本水价为元;每立方米的污水处理费是元.
依题意:
解之得:
答:每立方米的基本水价为2.45元;每立方米的污水处理费是1元.
(2)根据题意得:
∵ ∴
根据题意得:
∴
解得:
答:设该用户5月份最多可用水15立方米.
此题考查二元一次方程组的应用,一元一次不等式的应用,解题关键在于列出方程
17、(1)作图见解析;(2)作图见解析.
【解析】
(1)分别将点A、B、C向下平移4个单位,再向左平移4个单位得到对应点,再顺次连接可得;
(2)分别将点A、B、C绕点A顺时针旋转90°得到对应点,再顺次连接可得.
【详解】
(1)如图所示;
(2)如图所示.
本题主要考查作图-平移变换、旋转变换,解题的关键是熟练掌握平移变换和旋转变换的定义和性质.
18、(1)该商家购进第一批纪念衫单价是30元;(2)每件纪念衫的标价至少是40元.
【解析】
(1)设未知量为x,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.
(2)设未知量为y,根据题意列出一元一次不等式,解不等式可得出结论.
【详解】
(1)设该商家购进第一批纪念衫单价是x元,则第二批纪念衫单价是(x+5)元,
由题意,可得:,
解得:x=30,
检验:当x=30时,x(x+5)≠0,
∴原方程的解是x=30
答:该商家购进第一批纪念衫单价是30元;
(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)
设每件纪念衫标价至少是a元,由题意,可得:
40×(a﹣30)+(80﹣20)×(a﹣35)+20×(0.8a﹣35)≥640,
化简,得:116a≥4640
解得:a≥40,
答:每件纪念衫的标价至少是40元.
本题考查分式方程的应用,一元一次不等式的应用,解决此类题的关键是要根据题意找出题目中的等量或不等量关系,根据关系列方程或不等式解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
【详解】
由题意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考点:本题考查的是菱形的性质
解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
20、x<﹣1.
【解析】
以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.
【详解】
解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),
∴不等式-2x>ax+3的解集为x<-1.
故答案为x<-1.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
21、y1>y2
【解析】
∵k=a<0,
∴y随x的增大而减小.
∵−4<2,∴y1>y2.
故答案为y1>y2.
22、>
【解析】
根据一次函数的性质即可得答案.
【详解】
∵一次函数y=-3x+1中,-3<0,
∴函数图象经过二、四象限,y随x的增大而减小,
∵-4<1,
∴y1>y2,
故答案为:>
本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴;熟练掌握一次函数的性质是解题关键.
23、
【解析】
利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案
【详解】
解:设斜边上的高为h,
在Rt△ABC中,利用勾股定理可得:
根据三角形面积两种算法可列方程为:
解得:h=2.4cm,
故答案为2.4cm
本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.
二、解答题(本大题共3个小题,共30分)
24、详见解析.
【解析】
(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD∥CB,AD=CB,
∴∠DAE=∠BCF,
在△ADE和△CBF中,
∴△ADE≌△CBF,
∴DE=BF.
(2)由(1),可得∴△ADE≌△CBF,
∴∠ADE=∠CBF,
∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,
∴∠DEF=∠BFE,
∴DE∥BF,
又∵DE=BF,
∴四边形DEBF是平行四边形.
考点:平行四边形的判定与性质;全等三角形的判定与性质.
25、(1)详见解析;(2)详见解析.
【解析】
(1)利用勾股定理即可解决问题.
(2)利用数形结合的思想,画一个边长为的正方形即可.
【详解】
解:(1)线段AB如图所示.
(2)正方形ABCD如图所示.
本题考查作图﹣应用与设计,勾股定理等知识,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题.
26、解:(1)3600,20;
(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b,
根据题意,当x=50时,y=1950;当x=80时,y=3600
∴
解得:
∴函数关系式为:y=55x﹣1.
②缆车到山顶的线路长为3600÷2=11米,
缆车到达终点所需时间为11÷180=10分钟
小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,
把x=60代入y=55x﹣1,得y=55×60﹣1=2500
∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.
【解析】略
题号
一
二
三
四
五
总分
得分
成绩(分)
6
7
8
9
10
人数
3
2
3
1
1
用水量(立方米)
缴纳生活用水费用(元)
甲用户
8
27.6
乙用户
12
46.3
2023-2024学年广西柳州市城中区文华中学数学九上期末调研模拟试题含答案: 这是一份2023-2024学年广西柳州市城中区文华中学数学九上期末调研模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,方程2x等内容,欢迎下载使用。
2023-2024学年广西柳州市城中区龙城中学数学九上期末综合测试试题含答案: 这是一份2023-2024学年广西柳州市城中区龙城中学数学九上期末综合测试试题含答案,共7页。试卷主要包含了在中,,,则的值为等内容,欢迎下载使用。
广西柳州市城中区龙城中学2023-2024学年九年级数学第一学期期末达标检测试题含答案: 这是一份广西柳州市城中区龙城中学2023-2024学年九年级数学第一学期期末达标检测试题含答案,共8页。试卷主要包含了下列各组中的四条线段成比例的是等内容,欢迎下载使用。