2024年广西壮族自治区玉林市九年级数学第一学期开学统考试题【含答案】
展开
这是一份2024年广西壮族自治区玉林市九年级数学第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是( )
A.B.C.D.
2、(4分)如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y的二元一次方程组的解是( )
A.B.C.D.
3、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
A.16B.19C.22D.25
4、(4分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是( )
A.120°B.130°C.140°D.150°
5、(4分)如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )
(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.
A.1个B.2个C.3个D.4个
6、(4分)不等式组的解集是x>4,那么m的取值范围是( )
A.m≤4B.m<4C.m≥4D.m>4
7、(4分)下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为( )
A.0B.1C.2D.4
8、(4分)在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为( )
A.84B.24C.24或84D.42或84
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.
10、(4分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)
11、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为 .
12、(4分)若a2﹣5ab﹣b2=0,则的值为_____.
13、(4分)如图,在矩形ABCD中,已知AB=3,BC=4,则BD=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC是等边三角形,BD是中线,P是直线BC上一点.
(1) 若CP=CD,求证:△DBP是等腰三角形;
(2) 在图①中建立以△ABC的边BC的中点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴的平面直角坐标系,如图②,已知等边△ABC的边长为2,AO=,在x轴上是否存在除点P以外的点Q,使△BDQ是等腰三角形?如果存在,请求出Q点的坐标;如果不存在,请说明由.
15、(8分)如图,一次函数y=2x+4的图象分别与x轴,y轴教育点A、点B、点C为x轴一动点。
(1)求A,B两点的坐标;
(2)当ΔABC的面积为6时,求点C的坐标;
(3)平面内是否存在一点D,使四边形ACDB使菱形,若存在,请直接写出点D的坐标;若不存在,请说明理由。
16、(8分)(发现)如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)
(探究)如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.
(应用)在(探究)的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是: .(只添加一个条件)
17、(10分)某校举办“书香校园”读书活动,经过对八年级(2)班的全体学生的每人每月读书的数量(单位:本)进行统计分析,得到条形统计图如图所示:
(1)填空:该班学生读书数量的众数是 本,中位数是 本;
(2)求该班学生每月的平均读书数量?(结果精确到0.1)
18、(10分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1)求∠ABD的度数;
(2)求线段BE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是_____.
20、(4分)直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是_______.
21、(4分)直线y=﹣3x+5与x轴交点的坐标是_____.
22、(4分)如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是12cm2,则AC的长是_____cm.
23、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:梯形中,,联结(如图1). 点沿梯形的边从点移动,设点移动的距离为,.
(1)求证:;
(2)当点从点移动到点时,与的函数关系(如图2)中的折线所示. 试求的长;
(3)在(2)的情况下,点从点移动的过程中,是否可能为等腰三角形?若能,请求出所有能使为等腰三角形的的取值;若不能,请说明理由.
25、(10分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
求证:AP=EF.
26、(12分)解不等式组:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.
【详解】
解:由题意得:(10×14+15×6)÷20=11.5,
故选:C.
此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可.
.
2、C
【解析】
先利用直线y=x+2确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标得到答案.
【详解】
把P(m,4)代入y=x+2得:m+2=4,解得:m=2,即P点坐标为(2,4),所以二元一次方程组的解为.
故选C.
本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
3、C
【解析】
首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
【详解】
解:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°
∵∠B′EC=∠DEA,
在△AED和△CEB′中,
,
∴△AED≌△CEB′(AAS);
∴EA=EC,
∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3,
=22,
故选:C.
本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
4、C
【解析】
由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.
【详解】
∵四边形ABCD是菱形,
∴OB=OD,AC⊥BD,∠ADC=∠ABC,
∵DH⊥AB,
∴OH=OB=BD,
∵∠DHO=20°,
∴∠OHB=90°﹣∠DHO=70°,
∴∠ABD=∠OHB=70°,
∴∠ADC=∠ABC=2∠ABD=140°,
故选C.
本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.
5、C
【解析】
仔细分析图象特征,根据横轴和纵轴的意义依次分析各小题即可作出判断.
【详解】
解:由图可得,在x=40时,速度为0,故(1)(4)正确;
AB段,y的值相等,故速度不变,故(2)正确;
x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;
故选C.
本题考查实际问题的函数图象.实际问题的函数图象是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
6、A
【解析】
求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可得答案.
【详解】
解不等式(x+2)﹣3>0,得:x>4,
由不等式组的解集为x>4知m≤4,
故选A.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键
7、B
【解析】
①样本的方差越小,波动性越小,说明样本稳定性越好,故①正确;
②一组数据的众数不只有一个,有时有好几个,故②错误;
③一组数据的中位数不一定是这组数据中的某一数,若这组数据有偶数个即是将一组数据从小到大重新排列后最中间两个数的平均数,故③错误;
④数据:2,2,3,2,2,5的众数为2,故④错误;
⑤一组数据的方差不一定是正数,也可能为零,故⑤错误.
所以说法正确的个数是1个.
故选B.
8、C
【解析】
由于高的位置不确定,所以应分情况讨论.
【详解】
(1)△ABC为锐角三角形,高AD在三角形ABC的内部,
∴BD==9,CD==5,
∴△ABC的面积为=84,
(2)△ABC为钝角三角形,高AD在三角形ABC的外部,
∴BD==9,CD==5,
∴△ABC的面积为=24,
故选C.
此题主要考察勾股定理的应用,解题的关键是根据三角形的形状进行分类讨论.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.
【详解】
连接BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴
∴
则
∵FE=BE=EC,
∴
∴
故答案为
考查翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置不变,对应边和对应角相等是解题的关键.
10、①③④
【解析】
首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.
【详解】
解:连接CF,
∵AC=BC,∠ACB=90°,点F是AB中点,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正确;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正确;
∴S△DCF=S△BEF,
∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.
若EF⊥BC时,则可得:四边形CDFE是矩形,
∵DF=EF,
∴四边形CDFE是正方形,故②错误.
∴结论中始终正确的有①③④.
故答案为:①③④.
此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.
11、1
【解析】
∵在△ABC中,∠B=90°,AB=3,AC=5,
∴BC=.
∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案是:1.
12、5
【解析】
由已知条件易得,,两者结合即可求得所求式子的值了.
【详解】
∵,
∴,
∵,
∴.
故答案为:5.
“能由已知条件得到和”是解答本题的关键.
13、1
【解析】
先由矩形的性质求出CD= AB=3,再根据勾股定理可直接算出BD的长度.
【详解】
∵四边形ABCD是菱形,
∴CD= AB=3,
由勾股定理可知,BD==1.
故答案为1.
本题主要考查了矩形的性质,勾股定理的知识点,熟练掌握勾股定理是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析(2)P1(--1,0),P2(0,0)P3(+1,0)
【解析】
(1)根据等边三角形的性质即可证明;(2)分三种情况讨论:①若点P在x轴负半轴上,②若点P在x轴上,③若点P在x轴正半轴上,分别进行求解即可.
【详解】
(1)证明:∵△ABC是等边三角形
∴∠ABC=∠ACB=60°
∵BD是中线
∴∠DBC=30°
∵CP=CD
∴∠CPD=∠CDP
又∵∠ACB=60°
∴∠CPD=30°
∴∠CPD=∠DBC
∴DB=DP即△DBP是等腰三角形.
(2) 解:在x轴上存在除点P以外的点Q,使△BDQ是等腰三角形
①若点P在x轴负半轴上,且BP=BD
∵BD=∴BP=
∴OP=+1
∴点P1(--1,0)
②若点P在x轴上,且BP=PD
∵∠PBD=∠PDB=30°
∴∠DPC=60°又∠PCD=60°
∴PC=DC=1
而OC=1
∴OP=0
∴点P2(0,0)
③若点P在x轴正半轴上,且BP=BD
∴BP=而OB=1
∴OP=+1
∴点P3(+1,0)
15、(1)点A(-2,0),B(0,4);(2)点C(-5,0)或(1,0);(3)D (-,4)或(,4).
【解析】
(1) 利用坐标轴上点的特点求解即可得出结论;
(2) 根据△AOB的面积,可得出点C的坐标;
(3)根据勾股定理求出AB的长,再利用菱形的性质可得结果,分两种情况讨论.
【详解】
(1)当x=0,y=4
当y=0,x=-2
∴点A(-2,0),B(0,4)
(2)因为A(-2,0),B(0,4)
∴OA=2,OB=4
ΔABC的面积为
因为ΔABC的面积为6
∴AC=3
∵A(-2,0)
∴点C(-5,0)或(1,0)
(3)存在,理由:①如图:点C再A点左侧,
∵A(-2,0),B(0,4), ∴AB=,∵四边形ACDB为菱形,∴AC=AB=,∵ACBD, ∴AC=BD=AB=,∴D(-,4);
②如图:点C再A点右侧,
∵A(-2,0),B(0,4), ∴AB=,∵四边形ACDB为菱形,∴AC=AB=,∵ACBD, ∴AC=BD=AB=,∴D(,4);综上所述:D点的坐标为(-,4),(,4)
本题考查了一次函数的应用、菱形的性质以及三角形的面积问题,注意掌握数形结合思想和分类讨论的思想.
16、(1)见解析;(2)AC=BD.
【解析】
探究:连结AC,由四个中点可得EF∥AC且EF=AC、GH∥AC且GH=AC,据此可得EF∥GH,且EF=GH,从而得证;
应用:添加AC=BD,连接BD,由EF=AC、EH=BD,且AC=BD知EF=EH,根据四边形EFGH是平行四边形即可得证;
【详解】
探究:平行四边形,
证明:连结AC,
∵E、F分别是AB、BC的中点,
∴EF∥AC,且EF=AC.
∵G、H分别是CD、AD的中点,
∴GH∥AC,且GH=AC.
∴EF∥GH,且EF=GH.
∴四边形EFGH是平行四边形.
应用:
AC=BD;
连接BD,
∵EF=AC、EH=BD,且AC=BD,
∴EF=EH,
又∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
故答案为:AC=BD.
本题主要考查四边形的综合问题,解题的关键是掌握中位线定理,平行四边形、菱形的判定方法.
17、(1)4,4;(2)3.6本
【解析】
(1)生读书数量的众数是4,中位数是4,
故答案为4,4;
(2)该班学生每月的平均读书数量≈3.6本.
18、(1)∠ABD=60°;(3)BE=1.
【解析】
(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD为等边三角形.
∴∠ABD=60°.
(3)由(1)可知BD=AB=3.
又∵O为BD的中点,
∴OB=3.
∵OE⊥AB,∠ABD=60°,
∴∠BOE=30°.
∴.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
解:如图3所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,
∵AD=A′D=3,BE=BE′=3,
∴AA′=6,AE′=3.
∵DQ∥AE′,D是AA′的中点,
∴DQ是△AA′E′的中位线,
∴DQ=AE′=3;CQ=DC﹣CQ=3﹣3=3,
∵BP∥AA′,
∴△BE′P∽△AE′A′,
∴,即,BP=,CP=BC﹣BP==,
S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×3﹣×3×﹣×3×=,
故答案为.
本题考查3.轴对称-最短路线问题;3.正方形的性质.
20、(0,-3).
【解析】
直线y=3x+2沿y轴向下平移5个单位后对应的解析式为y=3x+2-5,
即y=3x-3,
当x=0时,y=-3,
即与y轴交点坐标为(0,-3).
21、 (,)
【解析】
试题分析:本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的纵坐标为0是解答此题的关键.∵令y=0,则﹣3x+5=0,解得x=,∴直线y=﹣3x+5与x轴交点的坐标是(,0).
考点:一次函数图象与x轴的交点
22、
【解析】
证Rt△AED≌Rt△AFB,推出S△AED=S△AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是12cm2,求出AE、EC的长,根据勾股定理求出AC即可.
【详解】
解:∵四边形AFCE是正方形,
∴AF=AE,∠E=∠AFC=∠AFB=90°,
∵在Rt△AED和Rt△AFB中
,
∴Rt△AED≌Rt△AFB(HL),
∴S△AED=S△AFB,
∵四边形ABCD的面积是12cm2,
∴正方形AFCE的面积是12cm2,
∴AE=EC=(cm),
根据勾股定理得:AC=,
故答案为:.
本题考查了全等三角形的性质和判定,正方形性质,勾股定理等知识点的应用.关键是求出正方形AFCE的面积.
23、1.1
【解析】
试题解析:∵∠AFB=90°,D为AB的中点,
∴DF=AB=2.1,
∵DE为△ABC的中位线,
∴DE=BC=4,
∴EF=DE-DF=1.1,
故答案为1.1.
直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2);(3),,,,或
【解析】
(1)由平行线的性质、直角三角形的性质、等腰三角形的性质得出∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,得出∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,即可得出结论;
(2)作DE⊥AB于E,则DE=BC=3,CD=BE,由勾股定理求出AE==4,得出CD=BE=AB-AE=1;
(3)分情况讨论:①点P在AB边上时;②点P在BC上时;③点P在AD上时;由等腰三角形的性质和勾股定理即可得出答案.
【详解】
(1)证明:∵,
∴,
又∵,
∴
∵,
∴,即
∴
(2)解:由点,得,
由点点的横坐标是8,得时,∴
作于,∵,∴,
∵,∴
(3)
情况一:点在边上,作,
当时,是等腰三角形,此时,,
∴
情况二:点在边上,当时是等腰三角形,
此时,,,
∴在中,,
即,
∴
情况三:点在边上时,不可能为等腰三角形
情况四:点在边上,有三种情况
1°作,当时,为等腰三角形,
此时,∵,
∴,
又∵,
∴
∴,
∴,
∴,
∴
∴
2°当时为等腰三角形,
此时,
3°当点与点重合时为等腰三角形,
此时或.
本题是四边形综合题目,考查了梯形的性质、平行线的性质、等腰三角形的性质与判定、直角三角形的性质、勾股定理等知识;本题综合性强,有一定难度.
25、见试题解析
【解析】
试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.
证明:如图,连接PC,
∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,
∴∠PEC=∠PFC=∠ECF=90°,
∴四边形PECF为矩形,
∴PC=EF,
又∵P为BD上任意一点,
∴PA、PC关于BD对称,
可以得出,PA=PC,所以EF=AP.
26、2<x≤1
【解析】
分别计算出各不等式的解集,再求出其公共解集即可.
【详解】
解:解①得:x>2
解②得:x≤1
不等式组的解集是2<x≤1.
本题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年广西壮族自治区桂平市九上数学开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南洛阳伊川数学九年级第一学期开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西壮族自治区防城港市数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。