2024年广州越秀区执信中学九上数学开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )
A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3
2、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )
A.2个B.3个C.4个D.1个
3、(4分)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是( )
A.8B.7C.4D.3
4、(4分)如图,在中,,,点D是AB的中点,则
A.4B.5C.6D.8
5、(4分)已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()
A.11B.6.5C.7D.7.5
6、(4分)直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是( )
A.B.
C.D.
7、(4分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于( )
A.8cmB.6cmC.4cmD.2cm
8、(4分)已知甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是30岁,这三个团游客年龄的方差分别是=1.4,=11.1.=25,导游小芳喜欢带游客年龄相近的团队,若要在这三个团中选择一个,则她应选( )
A.甲B.乙C.丙D.都可以
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)矩形 内一点 到顶点 ,, 的长分别是 ,,,则 ________________.
10、(4分)若∠BAC=30°,AP平分∠BAC,PD∥AC,且PD=6,PE⊥AC,则PE=________.
11、(4分)如图,直线经过点,当时,的取值范围为__________.
12、(4分)如图,在▱ABCD中,∠A=65°,则∠D=____°.
13、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在ABCD中,AB∥CD,AD=BC,∠B=60°,AC平分∠DAB.
(1)求∠ACB的度数;
(2)如果AD=1,请直接写出向量和向量的模.
15、(8分)我们借助对同一个长方形面积的不同表示,可以解释一些多项式的因式分解.例如选取图①中的卡片张、卡片张、卡片张,就能拼成图②所示的正方形,从而可以解释.请用卡片张、卡片张、卡片张拼成一个长方形,画图并完成多项式的因式分解.
16、(8分)学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.
(1)若连接AC,试证明:OABC是直角三角形;
(2)求这块地的面积.
17、(10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差,数据:11,15,18,17,10,19的方差:
(1)分别求甲、乙两段台阶的高度平均数;
(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?
(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.
18、(10分)如图,在矩形ABCD中,AB=4,AD=10,点E在AD边上,已知B、E两点关于直线l对称,直线l分别交AD、BC边于点M、N,连接BM、NE.
(1)求证:四边形BMEN是菱形;
(2)若DE=2,求NC的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线与直线平行且经过点,则__.
20、(4分)将直线y=-2x+4向左平移2个单位,得到直线的函数解析式为___________
21、(4分)分式的值为0,那么的值为_____.
22、(4分)如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为 .
23、(4分)如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图,为衣架的墙角固定端,为固定支点,为滑动支点,四边形和四边形是菱形,且,点在上滑动时,衣架外延钢体发生角度形变,其外延长度(点和点间的距离)也随之变化,形成衣架伸缩效果,伸缩衣架为初始状态时,衣架外延长度为,当点向点移动时,外延长度为.
(1)则菱形的边长为______.
(2)如图3,当时,为对角线(不含点)上任意一点,则的最小值为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了落实党的“精准扶贫”政策,A、B两城决定向C,D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨:从B城往C,D两乡运肥料的费用分别为15元/吨和24元/吨,现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求y与x的函数关系式.
(3)怎样调运才能使总运费最少?并求最少运费.
25、(10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:
该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件
(1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;
(2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?
26、(12分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),
设一次函数解析式为:y=kx+b,
∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),
∴可得出方程组,
解得,
则这个一次函数的解析式为y=﹣x+1.
故选D.
考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.
2、B
【解析】
根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.
【详解】
∵AD平分∠BAC
∴∠DAC=∠DAE
∵∠C=90°,DE⊥AB
∴∠C=∠E=90°
∵AD=AD
∴△DAC≌△DAE
∴∠CDA=∠EDA
∴①AD平分∠CDE正确;
无法证明∠BDE=60°,
∴③DE平分∠ADB错误;
∵BE+AE=AB,AE=AC
∴BE+AC=AB
∴④BE+AC=AB正确;
∵∠BDE=90°-∠B,∠BAC=90°-∠B
∴∠BDE=∠BAC
∴②∠BAC=∠BDE正确.
故选:B.
考查了角平分线的性质,解题关键是灵活运用其性质进行分析.
3、A
【解析】
根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可.
【详解】
解:∵四边形ABCD是菱形,
∴OA=OC=3,OB=OD,AC⊥BD,
在Rt△AOB中,∠AOB=90°,
根据勾股定理,得:OB===4,
∴BD=2OB=8,
故选A.
本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.
4、B
【解析】
根据直角三角形中,斜边上的中线等于斜边的一半解答即可.
【详解】
,点D为AB的中点,
.
故选:B.
本题考查直角三角形的性质,掌握在直角三角形中斜边上的中线等于斜边的一半是解题的关键.
5、A
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形BPQC=PQ×EC=5×EC=20,
∴S菱形BPQC=BC•EC,
即20=5•EC,
∴EC=4
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故选A.
此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.
6、C
【解析】
根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案
【详解】
解:根据一次函数的系数与图象的关系依次分析选项可得:
A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;
B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;
C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;
D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;
故选:C.
本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.
7、C
【解析】
试题分析:解:∵四边形ABCD是平行四边形,
∴BC=AD=12cm,AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BEA=∠BAE,
∴BE=AB=8cm,
∴CE=BC﹣BE=4cm;
故答案为C.
考点:平行四边形的性质.
8、A
【解析】
分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
详解:∵S甲2=1.4,S乙2=11.1,S丙2=25,
∴S甲2<S乙2<S丙2,
∴游客年龄最相近的团队是甲.
故选A.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
如图作PE⊥AB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形,设AE=DF=a,EP=B G=b,BE=PG=c,PF=CG=d,则有a2+b2=9,c2+a2=16,c2+d2=25,可得2(a2+c2)+b2+d2=9+16+25推出b2+d2=18,即可解决问题.
【详解】
解:如图作PELAB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形.
设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有:a2+b2=9,c2+a2=16,c2+d2=25
∴2(a2+c2)+b2+d2=9+16+25
∴b2+d2=18
∴PD= ,故答案为 .
本题考查矩形的性质、勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.
10、1
【解析】
分析:过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=10°,再根据10度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.
详解:过P作PF⊥AB于F.∵PD∥AC,∴∠FDP=∠BAC=10°,∴在Rt△PDF中,PF=PD=1.
∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=1.
故答案为1.
点睛:本题考查了角平分线的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.
11、
【解析】
根据题意结合图象首先可得的图象过点A,因此便可得的解集.
【详解】
解:∵正比例函数也经过点,
∴的解集为,
故答案为:.
本题主要考查函数的不等式的解,关键在于根据图象来判断,这是最简便的解题方法.
12、115
【解析】
根据平行四边形的对边平行即可求解.
【详解】
依题意知AB∥CD
∴∠D=180°-∠A=115°.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对边平行.
13、x=-1
【解析】
观察图象,根据图象与x轴的交点解答即可.
【详解】
∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),
∴kx+1=0的解是x= -1.
故答案为:x= -1.
本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.
三、解答题(本大题共5个小题,共48分)
14、 (1)∠ACB=90°;(1)模分别为1和1.
【解析】
(1)证明四边形ABCD是等腰梯形即可解决问题;(1)求出线段CD、AB的长度即可;
【详解】
(1)∵CD∥AB,AD=BC,
∴四边形ABCD是等腰梯形,
∴∠DAB=∠B=60°,
∵AC平分∠DAB,
∴∠CAB=∠DAB=30°,
∴∠B+∠CAB=90°,
∴∠ACB=90°.
(1)∵CD∥AB,
∴∠DCA=∠CAB=∠CAD=30°,
∴AD=CD=BC=1,
在Rt△ABC中,∵∠CAB=30°,∠ACB=90°,
∴AB=1BC=1,
∵++=,
∴向量和向量++的模分别为1和1.
本题考查平面向量、等腰梯形的判定和性质、等腰三角形的判定和性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
15、见详解,
【解析】
先画出图形,再根据图形列式分解即可.
【详解】
解:如图,
此题主要考查了因式分解,正确的画出图形是解决问题的关键.
16、(1)见解析;(2)这块地的面积是24平方米.
【解析】
(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理解答即可;
(2)根据三角形的面积公式求解即可.
【详解】
(1)∵AD=4,CD=3,AD⊥DC,
由勾股定理可得:AC= ,
又∵AC2+BC2=52+122=132=AB2 ,
∴△ABC是直角三角形;
(2)△ABC的面积△ACD的面积==24(m2),
所以这块地的面积是24平方米.
本题考查了勾股定理及勾股定理逆定理的应用,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.反之也成立.
17、(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm,游客行走更舒服.
【解析】
分析:(1)根据图中所给的数据,利用平均数公式求解即可;
(2)根据平均数、中位数、方差和极差的特征回答即可;
(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.
详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,
乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.
(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.
(3)每个台阶高度均为15cm(原平均数)使得方差为0,游客行走更舒服.
点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.
18、(1)证明见解析; (2)NC=1.
【解析】
(1)根据B、E两点关于直线l对称,可得BM=ME,BN=NE,再根据矩形的性质可得BM=BN,从而得出BM=ME=BN=NE,通过四边相等的四边形是菱形即可得出结论;(2) 菱形边长为x,利用勾股定理计算即可.
【详解】
(1)∵ B、E两点关于直线l对称
∴ BM=ME,BN=NE,∠BMN=∠EMN在矩形ABCD中,AD∥BC
∴ ∠EMN=∠MNB
∴ ∠BMN=∠MNB
∴ BM=BN
∴ BM=ME=BN=NE
∴ 四边形ECBF是菱形.
(2)设菱形边长为x
则 AM=8-x
在Rt△ABM中,
∴ x=1.
∴NC=1.
本题考查了轴对称的性质及勾股定理的应用,解题的关键是熟记轴对称的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(1,2)代入一次函数解析式可求出b的值.
【详解】
直线与直线平行,
,
,
把点代入得,解得;
,
故答案为:2
本题主要考查了两条直线相交或平行问题,待定系数法,解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.
20、
【解析】
根据图象平移的规律,左加右减,上加下减,即可得到答案.
【详解】
解:由题意得,
y=-2x+4=-2(x+2)+4,
即y=-2x,
故答案为:y=-2x.
本题主要考查了一次函数图象与几何变换,掌握一次函数图象是解题的关键.
21、-1
【解析】
根据分式值为0得出分子等于0求出x的值,再根据分母不等于0排除x=1,即可得出答案.
【详解】
∵分式的值为0
∴
解得:x=1或x=-1
又x-1≠0
∴x=-1
故答案为-1.
本题考查的是分式的值为0,属于基础题型,注意分式值为0则分子等于0,但分母不等于0.
22、x<.
【解析】
先把点A(m,3)代入函数y=2x求出m的值,再根据函数图象即可直接得出结论.
【详解】
∵点A(m,3)在函数y=2x的图象上,
∴3=2m,解得m=,
∴A(,3),
由函数图象可知,当x<时,函数y=2x的图象在函数y=ax+5图象的下方,
∴不等式2x<ax+5的解集为:x<.
23、25;
【解析】
(1)过F作于,根据等腰三角形的性质可得.
(2)作等边,等边,得到,得出,而当、、、共线时,最小,再根据,继而求出结果.
【详解】
(1)如图,过F作于,设,由题意衣架外延长度为得,
当时,外延长度为.则.
则有,
∴,
∴.
∵
∴菱形的边长为25cm
故答案为:25cm
(2)作等边,等边,
∴EM=EP, EH=EQ
∴,
∴,,
∴,
当、、、共线时,最小,
易知,
∵,
∴的最小值为.
本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、(1)A城200吨,B城300吨;(2)y=4x+10040;(3)10040元,见解析.
【解析】
(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;
(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式;
(3)利用一次函数的性质即得结论.
【详解】
(1)设A城有化肥a吨,B城有化肥b吨
根据题意,得
解得
答:A城和B城分别有200吨和300吨肥料;
(2)∵从A城运往C乡肥料x吨,
∴从A城运往D乡(200-x)吨,
从B城运往C乡肥料(240-x)吨,则从B城运往D乡(60+x)吨.
∴根据题意,得:y=20x+25(200-x)+15(240-x)+24(60+x)=4x+10040
(3)由于y=4x+10040是一次函数,k=4>0,
∴y随x的增大而增大.
因为x≥0,
所以当x=0时,运费最少,最少运费是10040元.
∴当从A城运往D乡200吨,从B城运往C乡肥料240吨,则从B城运往D乡60吨时总运费最少,最少运费是10040元.
本题考查了二元一次方程组及一次函数的应用.根据题意列出一次函数解析式是关键.
25、(1)y=2x+30(2)购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元
【解析】
(1)根据总费用=甲种型号机器人的费用+乙种机器人的费用,求出y与x的关系式即可;
(2)根据这10台机器人每小时分拣快递件数总和不少于8500件,列出不等式,求得x的取值范围,再利用(1)中函数,求出y的最小值即可.
【详解】
解:(1)y与x之间的函数关系式为:
y=5x+3(10﹣x)=2x+30;
(2)由题可得:1000x+800(10﹣x)≥8500,
解得,
∵2>0,
∴y随x的增大而增大,
∴当x=3时,y取得最小值,
∴y最小=2×3+30=36,
∴购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元.
本题主要考查了一次函数的应用,解决此题的关键是熟练掌握函数的性质.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
26、(1)见解析;(2)见解析.
【解析】
试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
试题解析:
证明:(1)选取①②,
∵在△BEO和△DFO中,
∴△BEO≌△DFO(ASA);
(2)由(1)得:△BEO≌△DFO,
∴EO=FO,BO=DO,
∵AE=CF,
∴AO=CO,
∴四边形ABCD是平行四边形.
点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
题号
一
二
三
四
五
总分
得分
批阅人
型号
甲
乙
每台每小时分拣快递件数(件)
1000
800
每台价格(万元)
5
3
2024年广州越秀区五校联考九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年广州越秀区五校联考九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省广州市越秀区知用中学九上数学开学质量检测模拟试题【含答案】: 这是一份2024年广东省广州市越秀区知用中学九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省广州市越秀区育才实验学校九上数学开学质量检测模拟试题【含答案】: 这是一份2024年广东省广州市越秀区育才实验学校九上数学开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。