2024年河北省廊坊市三河市九年级数学第一学期开学检测试题【含答案】
展开
这是一份2024年河北省廊坊市三河市九年级数学第一学期开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)方程x(x-6)=0的根是( )
A.x1=0,x2=-6B.x1=0,x2=6C.x=6D.x=0
2、(4分)如图,在平行四边形中,,,,点是折线上的一个动点(不与、重合).则的面积的最大值是( )
A.B.1C.D.
3、(4分)将一幅三角板如图所示摆放,若,那么∠1的度数为()(提示:延长EF或DF)
A.45°B.60°C.75°D.80°
4、(4分)若二次根式有意义,则x的取值范围是( )
A.B.C.D.
5、(4分)在下列图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
6、(4分)若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是( )
A.m≠2且n=0B.m=2且n=0C.m≠2D.n=0
7、(4分)一组数据3,4,4,5,5,5,6,6,7众数是( )
A.4B.5C.6D.7
8、(4分)直线与直线在同一平面直角坐标系中的图象如图所示,则关于x的不等式的解为( )
A.x>-1B.x<-1C.x<-2D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某商品的标价比成本高,当该商品降价出售时,为了不亏本,降价幅度不得超过,若用表示,则___.
10、(4分)如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.
11、(4分)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为 .
12、(4分)如图,在平面直角坐标系中,△ABC与△A′B'C′关于点P位似且顶点都在格点上,则位似中心P的坐标是______.
13、(4分)如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数 的图象上,则矩形ABCD的周长为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在5×5的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.
(1)画线段AC,使它的另一个端点C落在格点(即小正方形的顶点)上,且长度为;
(2)以线段AC为对角线,画凸四边形ABCD,使四边形ABCD既是中心对称图形又是轴对称图形,顶点都在格点上,且边长是无理数;
(3)求(2)中四边形ABCD的周长和面积.
15、(8分)如图,一次函数的图象与轴交于点A,正方形ABCD的顶点B在轴上,点D在直线上,且AO=OB,反比例函数()经过点C.
(1)求一次函数和反比例函数的解析式;
(2)点P是轴上一动点,当的周长最小时,求出P点的坐标;
(3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M的坐标.
16、(8分)解不等式组,把解集表示在数轴上并写出该不等式组的所有整数解.
17、(10分)在平面直角坐标系中,点坐标为,以原点为顶点的四边形是平行四边形,将边沿轴翻折得到线段,连结交线段于点.
(1)如图1,当点在轴上,且其坐标为.
①求所在直线的函数表达式;
②求证:点为线段的中点;
(2)如图2,当时,,的延长线相交于点,试求的值.(直接写出答案,不必说明理由)
18、(10分)如图,在平面直角坐标系中,,顶点;直线.
(1)点的坐标是______,对角线与的交点的坐标是______.
(2)①过点的直线的解析式是______.
②过点的直线的解析式是______.
③判断①、②中两条直线的位置关系是______.
(3)当直线平分的面积时,的值是______.
(4)一次函数的图像______(填“能”或“不能”)平分的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
20、(4分)如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.
21、(4分)已知方程=2,如果设=y,那么原方程可以变形为关于y的整式方程是_____.
22、(4分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为____________.
23、(4分)若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).
二、解答题(本大题共3个小题,共30分)
24、(8分)计算
(1)
(2)
(3)
(4)(+3﹣2)×2
25、(10分)某商场欲招聘一名员工,现有甲、乙两人竞聘.通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示:
(1)若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,计算两名应试者的平均成绩.从成绩看,应该录取谁?
(2)若商场需要招聘电脑收银员,计算机、语言和商品知识成绩分别占50%,30%,20%,计算两名应试者的平均成绩.从成绩看,应该录取谁?
26、(12分)如图所示,在第四象限内的矩形OABC,两边在坐标轴上,一个顶点在一次函数y=0.5x﹣3的图象上,当点A从左向右移动时,矩形的周长与面积也随之发生变化,设线段OA的长为m,矩形的周长为C,面积为S.
(1)试分别写出C、S与m的函数解析式,它们是否为一次函数?
(2)能否求出当m取何值时,矩形的周长最大?为什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据因式分解,原方程转化为x=0或x-6=0,然后解两个一次方程即可得答案.
【详解】
解:x(x-6)=0,
x=0或x-6=0,
∴x1=0,x2=6,
故选B.
本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的解法是关键.
2、D
【解析】
分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.
【详解】
解:分三种情况:
①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,
过A作AF⊥BC于F,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠C+∠B=180°,
∵∠C=120°,
∴∠B=60°,
Rt△ABF中,∠BAF=30°,
∴BF=AB=1,AF=,
∴此时△ABE的最大面积为:×4×=2;
②当E在CD上时,如图2,此时,△ABE的面积=S▱ABCD=×4×=2;
③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积=2,
综上,△ABE的面积的最大值是2;
故选:D.
本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.
3、C
【解析】
延长DF交BC于点G,根据两直线平行内错角相等可得度数,由外角的性质可得的度数,易知∠1的度数.
【详解】
解:如图,延长DF交BC于点G
故选:C
本题考查了平行线的性质,由题意添加辅助线构造内错角是解题的关键.
4、D
【解析】
试题分析:根据二次根式的意义,可知其被开方数为非负数,因此可得x-2≥0,即x≥2.
故选D
5、C
【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.
【详解】
A.不是轴对称图形,是中心对称图形,不合题意;
B.是轴对称图形,不是中心对称图形,不合题意;
C.是轴对称图形,也是中心对称图形,符合题意;
D.不是轴对称图形,是中心对称图形,不合题意,
故选C.
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、A
【解析】
试题解析:若y关于x的函数是正比例函数,
解得:
故选A.
7、B
【解析】
先把数据按大小排列,然后根据众数的定义可得到答案.
【详解】
数据按从小到大排列:3,4,4,5,5,5,6,6,7,
数据5出现3次,次数最多,所以众数是5.
故选B.
此题考查众数,难度不大
8、B
【解析】
如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.
【详解】
解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x
相关试卷
这是一份2024-2025学年河北省廊坊市文安县九年级数学第一学期开学调研试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省廊坊市名校九年级数学第一学期开学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河北省廊坊市三河市九上数学期末统考模拟试题含答案,共8页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。